To investigate the effect of liquid nitrogen on the granite failure process, the deterioration effect of liquid nitrogen on heated granite was investigated from experimental and theoretical perspectives. The mechanical properties of heated granite (25, 100, 200, 300, and 400 °C) after different cooling treatments (air cooling and liquid nitrogen cooling) were investigated by uniaxial compression tests. The damage evolution analysis was performed by a statistical damage constitutive model and the dissipation energy ratio was newly defined. The results show that there is an increase in the uniaxial compressive strength of heated granite before 200 °C, which is due to the competitive relationship between the thermal cracking and crack closure. Liquid nitrogen cooling can deteriorate the mechanical properties of heated granite in terms of strength and deformability. At 400 °C, the reduction rates of compressive strength and stiffness between air cooling and liquid nitrogen cooling reached 32.36% and 47.72%, respectively. Liquid nitrogen cooling induces greater initial thermal damage and, consequently, leads to a greater degree of total damage before the peak stress and makes rock easier to be damaged. At 400 °C, the total damage at the peak stress increased from 0.179 to 0.587 after the liquid nitrogen cooling. The difficulty of damage can be quantified by the dissipation energy ratio. In addition, the deterioration of liquid nitrogen on granite is positively related to temperature. This study confirmed the deterioration effect of liquid nitrogen and promoting effect of temperature, providing a theoretical approach to the degradation mechanism of liquid nitrogen.
As underground excavations become deeper, violent rock failures associated with the sudden release of elastic energy become more prevalent, threatening the safety of workers and construction equipment. It is important to figure out the energy-related failure mechanisms of rocks. However, the energy evolution across the complete deformation of different types of rocks and the effect of high confinement on energy storage and release are not well understood in the literature. In this study, a series of cyclic triaxial compression tests were conducted for Class I and Class II rocks to investigate the confinement-dependent characteristics of energy evolution. The results showed that three types of energy evolution were identified as the rock behavior changed from brittle to ductile. The energy storage limit was linearly enhanced by confinement. The nonlinear increase in dissipated energy at peak stress with increasing confinement was suggested to indicate the start of the brittle–ductile transition. The post-peak fracturing process was characterized using the ratio of the local withdrawn elastic energy and fracture energy, and a novel energy-based index was proposed to quantify the failure intensity of the rock. This paper presents a complete investigation of the energy conversion characteristics of the rock, which may shed light on the failure mechanisms of violent rock failures in underground projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.