HONO is an important precursor of OH radical and plays a key role in atmospheric chemistry, but its source and formation mechanism remain uncertain, especially during complex atmospheric pollution processes. In this study, HONO mixing ratios were measured by a custom-made instrument during a severe pollution event from 16 to 23 December 2016, at an urban area of Beijing. The measurement was divided into three periods: I (haze), II (severe haze) and III (clean), according to the levels of PM. This pollution episode was characterized by high levels of NO (75 ± 39 and 94 ± 40 ppbV during periods I and II, respectively) and HONO (up to 10.7 ppbV). During the nighttime, the average heterogeneous conversion frequency during the two haze periods were estimated to be 0.0058 and 0.0146 h, and it was not the important way to form HONO. Vehicle emissions contributed 52% (±16)% and 40% (±18)% to ambient HONO at nighttime during periods I and II. The contribution of homogeneous reaction of NO with OH should be reconsidered under high-NO conditions and could be noticeable to HONO sources during this pollution event. Furthermore, HONO was positively correlated with PM during periods I and II, suggesting a potential chemical link between HONO and haze particles.
Gaseous nitrous acid (HONO) is a crucial precursor of the hydroxyl (OH) radical, which is a "detergent" in the atmosphere. Nowadays, HONO formation mechanisms at polluted urban areas are controversial, which restricts the understanding of atmospheric oxidative capacity and radical cycling. Herein, multiday vertical observation of HONO and NO x was simultaneously performed at three heights at the urban area of Beijing for the first time. The vertical distribution of HONO was often unexpected, and it had the highest HONO concentration at 120 m, followed by those at 8 and 240 m. 0D box model simulations suggest that ground and aerosol surfaces might play similar roles in NO 2 conversion at 8 m during the whole measurement. NO 2 conversion on aerosol surfaces was the most important HONO source aloft during haze days. At daytime, a strong missing HONO source unexpectedly existed in the urban aloft, and it was relevant to solar radiation and consumed OH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.