Motion planning of underwater vehicles is regarded as a promising technique to make up the flexibility deficiency of underwater sensor networks (USNs). Nonetheless, the unique characteristics of underwater channel and environment make it challenging to achieve the above mission. This article is concerned with a communication-efficient and collision-free motion planning issue for underwater vehicles in fading channel and obstacle environment. We first develop a model-based integral reinforcement learning (IRL) estimator to predict the stochastic signal-to-noise ratio (SNR). With the estimated SNR, an integrated optimization problem for the codesign of communication efficiency and motion planning is constructed, in which the underwater vehicle dynamics, communication capacity, collision avoidance, and position control are all considered. In order to tackle this problem, a model-free IRL algorithm is designed to drive underwater vehicles to the desired position points while maximizing the communication capacity and avoiding the collision. It is worth mentioning that, the proposed motion planning solution in this article considers a realistic underwater communication channel, as well as a realistic dynamic model for underwater vehicles. Finally, simulation and experimental results are demonstrated to verify the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.