With the ever-increasing amount of data, the world has stepped into the era of ''Big Data''. Presently, the analysis of massive and complex data and the extraction of relevant information, have been become essential tasks in many fields of studies, such as health, biology, chemistry, social science, astronomy, and physics. However, compared with the development of data storage and management technologies, our ability to gain useful information from the collected data does not match our ability to collect the data. This gap has led to a surge of research activity in the field of visual analytics. Visual analytics employs interactive visualization to integrate human judgment into algorithmic data-analysis processes. In this paper, the aim is to draw a complete picture of visual analytics to direct future research by examining the related research in various application domains. As such, a novel categorization of visual-analytics applications from a technical perspective is proposed, which is based on the dimensionality of visualization and the type of interaction. Based on this categorization, a comprehensive survey of visual analytics is performed, which examines its evolution from visualization and algorithmic data analysis, and investigates how it is applied in various application domains. In addition, based on the observations and findings gained in this survey, the trends, major challenges, and future directions of visual analytics are discussed.
Anomaly detection has been widely used in a variety of research and application domains, such as network intrusion detection, insurance/credit card fraud detection, health-care informatics, industrial damage detection, image processing and novel topic detection in text mining. In this paper, we focus on remote facilities management that identifies anomalous events in buildings by detecting anomalies in building electricity consumption data. We investigated five models within electricity consumption data from different schools to detect anomalies in the data. Furthermore, we proposed a hybrid model that combines polynomial regression and Gaussian distribution, which detects anomalies in the data with 0 false negative and an average precision higher than 91%. Based on the proposed model, we developed a data detection and visualization system for a facilities management company to detect and visualize anomalies in school electricity consumption data. The system is tested and evaluated by facilities managers. According to the evaluation, our system has improved the efficiency of facilities managers to identify anomalies in the data.
Abstract-Anomaly detection has been widely used in a variety of research and application domains, such as network intrusion detection, insurance/credit card fraud detection, health-care informatics, industrial damage detection, image processing and novel topic detection in text mining. In this paper, we focus on remote facilities management that identifies anomalous events in buildings by detecting anomalies in building energy data. We have investigated five models to detect anomalies in the school electricity consumption data. Furthermore, we propose a hybrid model which combines polynomial regression and Gaussian distribution. Based on this model, we have developed a data detection and visualization system for a facilities management company to detect anomalous events in school electricity facilities. The system is tested and evaluated by the facilities managers of the company. According to the result of the evaluation, it reduces the effort required by facilities managers to identify anomalous events in school electricity facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.