We demonstrate the aggregation-induced electrochemiluminescence (AIECL) generated by 1,1,2,2-tetrakis(4-bromophenyl)ethane (TBPE)-based conjugated microporous polymers (TBPE-CMPs) and its biosensing application. We synthesized three TBPE-CMPs (i.e., TBPE-CMP-1, -2, -3) using three different molecules including tris(4-ethynylphenyl)amine (TEPA), 4,4′-diethynylbiphenyl (DEP), and 2,4,6-tris(4-ethynylphenyl)-1,3,5-triazine (TEPT). The TBPE-CMPs can act as electrochemiluminescence (ECL) emitters to generate AIECL. Among them, TBPE-CMP-1 exhibits the highest ECL efficiency (1.72%) due to the improved electron–hole recombination efficiency and efficient suppression of nonradiative transition. Moreover, the ECL properties of TBPE-CMPs can be tuned by the introduction of different conjugated molecules that can decrease the energy gap to facilitate the injection of an electron into the conjugated polymer backbone. Importantly, TBPE-CMP-1 can be used to construct an ECL sensor for the detection of dopamine, whose electro-oxidation products (e.g., leucodopaminechrome (LDC), dopaminechrome (DC), 5,6-dihydroxyindole (DHI), and 5,6-indolequinone (IDQ)) may function as energy acceptors to quench the ECL emission of TBPE-CMP-1. This ECL sensor exhibits high sensitivity and good anti-interference capability against ascorbic acid and uric acid.
Suppressing the recombination of photogenerated charges is one of the most important routes for enhancing the catalytic performance of semiconductor photocatalysts. In addition to the built‐in field produced by semiconductor heterostructures and the photo‐electrocatalysis realized by applying an external electrical potential to photocatalysts assembled on electrodes, other strategies are waiting to be scientifically explored and understood. In this work, a Lorentz force–assisted charge carrier separation enhancement strategy is reported to improve the photocatalytic efficiency by applying a magnetic field to a photocatalytic system. The photocatalytic efficiency can be improved by 26% just by placing a permanent magnet beneath the normal photocatalytic system without any additional power supply. The mechanism by which the Lorentz force acts oppositely on the photogenerated electrons and holes is introduced, resulting in the suppression of the photoinduced charge recombination. This work provides insights into the specific role of the Lorentz force in suppressing the recombination of electron–hole pairs in their initial photogenerated states. This suppression would increase the population of charge carriers that would subsequently be transported in the semiconductor. It is believed that this strategy based on magnetic effects will initiate a new way of thinking about photoinduced charge separation.
Covalent organic frameworks (COFs) can exhibit high specific surface area and catalytic activity, but traditional solution-based synthesis methods often lead to insoluble and infusible powders or fragile films on solution surface. Herein we report large-area –C=N– linked two-dimensional (2D) COF films with controllable thicknesses via vapor induced conversion in a chemical vapor deposition (CVD) system. The assembly process is achieved by reversible Schiff base polycondensation between PyTTA film and TPA vapor, which results in a uniform organic framework film directly on growth substrate, and is driven by π‐π stacking interactions with the aid of water and acetic acid. Wafer-scale 2D COF films with different structures have been successfully synthesized by adjusting their building blocks, suggesting its generic applicability. The carrier mobility of PyTTA-TPA COF films can reach 1.89 × 10−3 cm2 V−1 s−1. When employed as catalysts in hydrogen evolution reaction (HER), they show high electrocatalytic activity compared with metal-free COFs or even some metallic catalysts. Our results represent a versatile route for the direct construction of large-area uniform 2D COF films on substrates towards multi-functional applications of 2D π‐conjugated systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.