Titanium-supported nanoscale flaky nickel electrode (nanoNi/Ti) was prepared by a hydrothermal process using hydrazine hydrate as a reduction agent. Its electrocatalytic activity as an electrocatalyst for the electrooxidation of glucose was evaluated in alkaline solutions using cyclic voltammetry (CV), chronoamperometric responses (CA) and electrochemical impedance spectra (EIS). The nanoNi/Ti electrode exhibits significantly high current density of glucose oxidation. A high catalytic rate constant of 1.67 Â 10 6 cm 3 mol À1 s À1 was calculated from amperometric responses on the nanoNi/Ti electrode. Low charge transfer resistances on the nanoNi/Ti in 0.5 M NaOH containing various concentrations of glucose were obtained according to the analysis for EIS. Furthermore, amperometric data show a linear dependence of the current density for glucose oxidation upon glucose concentration in the range of 0.05 -0.6 mM with a sensitivity of 7.32 mA cm À2 mM À1 . A detection limit of 0.0012 mM (1.2 mM) M glucose was found. Results show that the prepared nanoNi/Ti electrode presents high electrocatalytic activity for glucose oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.