SummaryOilseed rape (Brassica napus L.), which has yellow flowers, is both an important oil crop and a traditional tourism resource in China, whereas the Orychophragmus violaceus, which has purple flowers, likely possesses a candidate gene or genes to alter the flower colour of oilseed rape. A previously established B. napus line has a particular pair of O. violaceus chromosomes (M4) and exhibits slightly red petals. In this study, the transcriptomic analysis of M4, B. napus (H3), and O. violaceus with purple petals (OvP) and with white petals (OvW) revealed that most anthocyanin biosynthesis genes were up‐regulated in both M4 and OvP. Read assembly and sequence alignment identified a homolog of AtPAP2 in M4, which produced the O. violaceus transcript (OvPAP2). The overexpression of OvPAP2 via the CaMV35S promoter in Arabidopsis thaliana led to different levels of anthocyanin accumulation in most organs, including the petals. However, the B. napus overexpression plants showed anthocyanin accumulation primarily in the anthers, but not the petals. However, when OvPAP2 was driven by the petal‐specific promoter XY355, the transgenic B. napus plants produced red anthers and red petals. The results of metabolomic experiments showed that specific anthocyanins accumulated to high levels in the red petals. This study illustrates the feasibility of producing red‐flowered oilseed rape, thereby enhancing its ornamental value, via the ectopic expression of the OvPAP2 gene. Moreover, the practical application of this study for insect pest management in the crop is discussed.
BackgroundThe gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium.ResultsThe ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil.ConclusionsDEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus.
Pyridox(am)ine 5′-phosphate oxidase (PNPO) catalyzes the rate-limiting step in the synthesis of pyridoxal 5′-phosphate (PLP), the active form of vitamin B6 required for the synthesis of neurotransmitters gamma-aminobutyric acid (GABA) and the monoamines. Pathogenic variants in PNPO have been increasingly identified in patients with neonatal epileptic encephalopathy and early-onset epilepsy. These patients often exhibit different types of seizures and variable comorbidities. Recently, the PNPO gene has also been implicated in epilepsy in adults. It is unclear how these phenotypic variations are linked to specific PNPO alleles and to what degree diet can modify their expression. Using CRISPR-Cas9, we generated four knock-in Drosophila alleles, hWT, hR116Q, hD33V , and hR95H, in which the endogenous Drosophila PNPO was replaced by wild-type human PNPO complementary DNA (cDNA) and three epilepsy-associated variants. We found that these knock-in flies exhibited a wide range of phenotypes, including developmental impairments, abnormal locomotor activities, spontaneous seizures, and shortened life span. These phenotypes are allele dependent, varying with the known biochemical severity of these mutations and our characterized molecular defects. We also showed that diet treatments further diversified the phenotypes among alleles, and PLP supplementation at larval and adult stages prevented developmental impairments and seizures in adult flies, respectively. Furthermore, we found that hR95H had a significant dominant-negative effect, rendering heterozygous flies susceptible to seizures and premature death. Together, these results provide biological bases for the various phenotypes resulting from multifunction of PNPO, specific molecular and/or genetic properties of each PNPO variant, and differential allele–diet interactions.
Distant hybridization usually leads to female sterility of the hybrid but the mechanism behind this is poorly understood. Complete pistil abortion but normal male fertility was shown by one Brassica napus-Orychophragmus violaceus monosomic alien addition line (MA, AACC + 1 IO, 2n = 39) produced previously. To study the effect of a single O. violaceus chromosome addition on pistil development in different genetic backgrounds, hybrids between the MA and B. carinata (BBCC), B. juncea (AABB), and two synthetic hexaploids (AABBCC) were firstly produced in this study which show complete female sterility. A microspore culture was further performed to produce the haploid monosomic alien addition line (HMA, AC + 1 IO, 2n = 20) and disomic addition line (DA, AACC + 2 IO, 2n = 40) together with haploid (H, AC, 2n = 19) and double haploid (DH, AACC, 2n = 38) plants of B. napus from MA to investigate the dosage effect of the alien O. violaceus chromosome on pistil development and gene expression. Compared to MA, the development of the pistils of DA and HMA was completely or partially recovered, in which the pistils could swell and elongate to a normal shape after open pollination, although no seeds were produced. Comparative RNA-seq analyses revealed that the numbers of the differentially expressed genes (DEGs) were significantly different, dosage-dependent, and consistent with the phenotypic difference in pairwise comparisons of HMA vs. H, DA vs. DH, MA vs. DH, MA vs. DA, and MA vs. HMA. The gene ontology (GO) enrichment analysis of DEGs showed that a number of genes involved in the development of the gynoecium, embryo sac, ovule, and integuments. Particularly, several common DEGs for pistil development shared in HMA vs. H and DA vs. DH showed functions in genotoxic stress response, auxin transport, and signaling and adaxial/abaxial axis specification. The results provided updated information for the molecular mechanisms behind the gynoecium development of B. napus responding to the dosage of alien O. violaceus chromosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.