BACKGROUND: Insects cannot synthesize sterols and must acquire them from food. The mechanisms underlying how insects uptake dietary sterols are largely unknown except that NPC1b, an integral membrane protein, has been shown to be responsible for dietary cholesterol uptake in Drosophila melanogaster. However, whether NPC1b orthologs in other insect species, particularly the economically important pests, function similarly remains to be determined. RESULTS:In this study, we characterized the function of NPC1b in Helicoverpa armigera, a global pest that causes severe yield losses to many important crops. Limiting dietary cholesterol uptake to insects significantly inhibited food ingestion and weight gain. Compared to the wild-type H. armigera, the CRISPR/Cas9-edited NPC1b mutant larvae were incapable of getting adequate cholesterol and died in their early life stage. Gene expression profile and in situ hybridization analyses indicated that NPC1b was mainly expressed in the midgut where dietary cholesterol was absorbed. Expression of NPC1b was also correlated with the feeding life stages and was especially upregulated during early larval instars. Protein-ligand docking and sequence similarity analyses further demonstrated that NPC1b proteins of lepidopteran insects shared a relatively conserved cholesterol binding region, NPC1b_NTD, which, however, was highly divergent from bees-derived sequences.CONCLUSION: NPC1b was crucial for dietary cholesterol uptake and growth of H. armigera, and therefore could serve as an insecticide target for the development of a novel pest-management approach to control this economically significant insect pest with little off-target effect on bees and sterol-autotrophic animals.
Armyworm feeding in large, destructive groups is hugely difficult to control and the oriental armyworm, Mythimna separata (Walk), is one such pest. In this study, we reported a semisynthetic artificial diet for the oriental armyworm. This diet is based on Ritter’s diet, a formula developed for Heliothis zea. The survival of M. separata was extremely low and only around 2% insects can reach the adult stage on Ritter’s diet. But, it can reach up to 100% if corn leaf powder (CLP) was mixed, and insects grew faster and gained more mass. After testing a set of mixtures of Ritter’s diet and CLP, we found that 14.3% was the optimal proportion of CLP for making the artificial diet. We then used chloroform to extract CLP. Insect performance was still much better on Ch-extracted CLP diets than that on Ritter’s diet, but it was poorer than that on the diets containing unprocessed CLP, suggesting that the essential factor(s) was only partially extracted from corn leaf. We then used methanol and dichloromethane, two solvents differing in their polarity, to process the extractions and analyzed the extracted chemicals using gas chromatography–mass spectrometry (GC-MS). Insects had a better performance on dichloromethane-extracted CLP diet in comparison to methanol-extracted one, indicating that the important factor(s) is more prone to methanol extraction. The reported recipe here is useful for the research on M. separata and possibly other grain-crop eating armyworms. The functions of the chemicals extracted from corn leaf tissue can be investigated in the future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.