Elastic waves have been observed to increase productivity of oil wells, although the reason for the vibratory mobilization of the residual organic fluids has remained unclear. Residual oil is entrapped as ganglia in pore constrictions because of resisting capillary forces. An external pressure gradient exceeding an “unplugging” threshold is needed to carry the ganglia through. The vibrations help overcome this resistance by adding an oscillatory inertial forcing to the external gradient; when the vibratory forcing acts along the gradient and the threshold is exceeded, instant “unplugging” occurs. The mobilization effect is proportional to the amplitude and inversely proportional to the frequency of vibrations. We observe this dependence in a laboratory experiment, in which residual saturation is created in a glass micromodel, and mobilization of the dyed organic ganglia is monitored using digital photography. We also directly demonstrate the release of an entrapped ganglion by vibrations in a computational fluid‐dynamics simulation.
The natural gas pipeline from Platform QK18-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature management of the subsea pipeline.
Analysis of capillary-pressure distribution in single channels with sinusoidal profile shows that surface tension-driven flow in such channels is controlled by the pressure extrema at their "crests" and "troughs". Formulating the geometric condition for the pressure in the troughs to exceed that in the crests leads to a simple criterion for the spontaneous break-up of the non-wetting fluid in the necks of the constrictions. The criterion reduces to the condition for the Plateau-Rayleigh instability as a limiting case. Similar pressure analysis is applicable to the case of a non-wetting fluid invading an open pore body. Computationalfluid-dynamics experiments have verified the validity of the break-up predicted from the capillary-pressure argument. Although the geometric criterion for the break-up is valid for small capillary numbers, it provides a common framework in which the results of various published studies of a non-wetting phase choke-off in capillary constrictions for a wide range of capillary numbers can be explained and understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.