Objectives This study aimed to investigate the effect of Liuzijue exercise combined with elastic band resistance exercise on patients with chronic obstructive pulmonary disease (COPD) to provide a convenient, safe, and cost-effective exercise. Methods Subjects were randomly divided into the control group (CG), the Liuzijue exercise group (LG), and the Liuzijue exercise combined with elastic band resistance exercise group (LEG), with 20 patients in each group. The LG performed Liuzijue exercise six times a week (two exercise sessions in the hospital and four exercise sessions at home). The LEG includes Liuzijue exercise similar to the LG and elastic band resistance exercise three times a week, with elastic band exercise implemented after Liuzijue exercise. Spirometry, 6-minute walking test (6MWT), 30-second sit-to-stand test (30 s SST), handgrip strength test, and St. George's Respiratory Questionnaire (SGRQ) were performed at baseline and at the end of intervention. Results After six-month intervention, the forced expiratory volume in 1 second (% predicted), 6-minute walking distance (6MWD), 6MWD%pred, 30 s SST, and SGRQ were significantly improved in the intervention groups (p < 0.01) and handgrip strength was increased significantly in the LG and LEG (p = 0.03 and p = 0.001, respectively). Furthermore, improvements in 6MWD and SGRQ were distinguished in the intervention groups compared with the CG (p < 0.01). No difference was significant in all of the outcomes between the LG and the LEG. Conclusions The intervention program of Liuzijue exercise combined with elastic band resistance exercise and Liuzijue exercise only has beneficial effects on COPD patients especially in the aspect of exercise capacity and quality of life.
Here, we present a genome-wide overview of transcriptional circuits in the agriculturally significant crop species maize (Zea mays). We examined transcript abundance data at 50 developmental stages, from embryogenesis to senescence, for 34,876 gene models and classified genes into 24 robust coexpression modules. Modules were strongly associated with tissue types and related biological processes. Sixteen of the 24 modules (67%) have preferential transcript abundance within specific tissues. One-third of modules had an absence of gene expression in specific tissues. Genes within a number of modules also correlated with the developmental age of tissues. Coexpression of genes is likely due to transcriptional control. For a number of modules, key genes involved in transcriptional control have expression profiles that mimic the expression profiles of module genes, although the expression of transcriptional control genes is not unusually representative of module gene expression. Known regulatory motifs are enriched in several modules. Finally, of the 13 network modules with more than 200 genes, three contain genes that are notably clustered (P < 0.05) within the genome. This work, based on a carefully selected set of major tissues representing diverse stages of maize development, demonstrates the remarkable power of transcript-level coexpression networks to identify underlying biological processes and their molecular components.
The Cubitus interruptus (Ci)/Gli family of transcription factors can be degraded either completely or partially from a full-length form (Ci155/Gli(FL)) to a truncated repressor (Ci75/Gli(R)) by proteasomes to mediate Hedgehog (Hh) signaling. The mechanism by which proteasomes distinguish ubiquitinated Ci/Gli to carry out complete versus partial degradation is not known. Here, we show that Ter94 ATPase and its mammalian counterpart, p97, are involved in processing Ci and Gli3 into Ci75 and Gli3(R), respectively. Ter94 regulates the partial degradation of ubiquitinated Ci by Cul1-Slimb-based E3 ligase through its adaptors Ufd1-like and dNpl4. We demonstrate that Cul1-Slimb-based E3 ligase, but not Cul3-Rdx-based E3 ligase, modifies Ci by efficient addition of K11-linked ubiquitin chains. Ter94(Ufd1-like/dNpl4) complex interacts directly with Cul1-Slimb, and, intriguingly, it prefers K11-linked ubiquitinated Ci. Thus, Ter94 ATPase and K11-linked ubiquitination in Ci contribute to the selectivity by proteasomes for partial degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.