Human pose estimation has received significant attention recently due to its various applications in the real world. As the performance of the state-of-the-art human pose estimation methods can be improved by deep learning, this paper presents a comprehensive survey of deep learning based human pose estimation methods and analyzes the methodologies employed. We summarize and discuss recent works with a methodologybased taxonomy. Single-person and multi-person pipelines are first reviewed separately. Then, the deep learning techniques applied in these pipelines are compared and analyzed. The datasets and metrics used in this task are also discussed and compared. The aim of this survey is to make every step in the estimation pipelines interpretable and to provide readers a readily comprehensible explanation. Moreover, the unsolved problems and challenges for future research are discussed.
Graph Neural Networks (GNNs) have achieved state of the art performance in node classification, regression, and recommendation tasks. GNNs work well when high-quality and rich connectivity structure is available. However, this requirement is not satisfied in many real world graphs where the node degrees have power-law distributions as many nodes have either fewer or noisy connections. The extreme case of this situation is a node may have no neighbors at all, called Strict Cold Start (SCS) scenario. This forces the prediction models to rely completely on the node's input features. We propose Cold Brew to address the SCS and noisy neighbor setting compared to pointwise and other graph-based models via a distillation approach. We introduce feature-contribution ratio (FCR), a metric to study the viability of using inductive GNNs to solve the SCS problem and to select the best architecture for SCS generalization. We experimentally show FCR disentangles the contributions of various components of graph datasets and demonstrate the superior performance of Cold Brew on several public benchmarks and proprietary e-commerce datasets. The source code for our approach is available at: https: //github.com/amazon-research/gnn-tail-generalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.