In order to plan the robot path in 3D space efficiently, a modified Rapidly-exploring Random Trees based on heuristic probability bias-goal (PBG-RRT) is proposed. The algorithm combines heuristic probabilistic and bias-goal factor, which can get convergence quickly and avoid falling into a local minimum. Firstly, PBG-RRT is used to plan a path. After obtaining path points, path points are rarefied by the Douglas-Peucker algorithm while maintaining the original path characteristics. Then, a smooth trajectory suitable for the manipulator end effector is generated by Non-uniform B-spline interpolation. Finally, the effector is moving along the trajectory by inverse kinematics solving angle of joint. The above is a set of motion planning for the manipulator. Generally, 3D space obstacle avoidance simulation experiments show that the search efficiency of PBG-RRT is increased by 217%, while search time is dropped by 168% compared with P-RRT (Heuristic Probability RRT). After rarefying, the situation where the path oscillated around the obstacle is corrected effectively. And a smooth trajectory is fitted by spline interpolation. Ultimately, PBG-RRT is verified on the ROS (Robot Operating System) with the Robot-Anno manipulator. The results reveal that the validity and reliability of PBG-RRT are proofed in obstacle avoidance planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.