Micropollutants are emerging as a new challenge to the scientific community. This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water. The discharge of treated effluent from WWTPs is a major pathway for the introduction of micropollutants to surface water. WWTPs act as primary barriers against the spread of micropollutants. WWTP removal efficiency of the selected micropollutants in 14 countries/regions depicts compound-specific variation in removal, ranging from 12.5 to 100%. Advanced treatment processes, such as activated carbon adsorption, advanced oxidation processes, nanofiltration, reverse osmosis, and membrane bioreactors can achieve higher and more consistent micropollutant removal. However, regardless of what technology is employed, the removal of micropollutants depends on physico-chemical properties of micropollutants and treatment conditions. The evaluation of micropollutant removal from municipal wastewater should cover a series of aspects from sources to end uses. After the release of micropollutants, a better understanding and modeling of their fate in surface water is essential for effectively predicting their impacts on the receiving environment.
Constructed wetlands (CWs) have been used as a green technology to treat various wastewaters for several decades. CWs offer a land-intensive, low-energy, and less-operational-requirements alternative to conventional treatment systems, especially for small communities and remote locations. However, the sustainable operation and successful application of these systems remains a challenge. Hence, this paper aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development on their sustainable design and operation for wastewater treatment. Firstly, a brief summary on the definition, classification and application of current CWs was presented. The design parameters and operational conditions of CWs including plant species, substrate types, water depth, hydraulic load, hydraulic retention time and feeding mode related to the sustainable operation for wastewater treatments were then discussed. Lastly, future research on improving the stability and sustainability of CWs were highlighted.
This review focuses on the removal of emerging contaminants (ECs) by biological, chemical and hybrid technologies in effluents from wastewater treatment plants (WWTPs). Results showed that endocrine disruption chemicals (EDCs) were better removed by membrane bioreactor (MBR), activated sludge and aeration processes among different biological processes. Surfactants, EDCs and personal care products (PCPs) can be well removed by activated sludge process. Pesticides and pharmaceuticals showed good removal efficiencies by biological activated carbon. Microalgae treatment processes can remove almost all types of ECs to some extent. Other biological processes were found less effective in ECs removal from wastewater. Chemical oxidation processes such as ozonation/HO, UV photolysis/HO and photo-Fenton processes can successfully remove up to 100% of pesticides, beta blockers and pharmaceuticals, while EDCs can be better removed by ozonation and UV photocatalysis. Fenton process was found less effective in the removal of any types of ECs. A hybrid system based on ozonation followed by biological activated carbon was found highly efficient in the removal of pesticides, beta blockers and pharmaceuticals. A hybrid ozonation-ultrasound system can remove up to 100% of many pharmaceuticals. Future research directions to enhance the removal of ECs have been elaborated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.