People attach greater importance to the physical health of teenagers because adolescence is a critical period for the healthy development of the human body. With the progress of biosensing technologies and artificial intelligence, it is feasible to apply wearable devices to continuously record teenagers’ physiological signals and make analyses based on modern advanced methods. To solve the challenge that traditional methods of monitoring teenagers’ physical fitness lack accurate computational models and in-depth data analyses, we propose a novel evaluation model for predicting the physical fitness of teenagers. First, we collected 1024 teenagers’ PPGs under the guidance of the proposed three-stage running paradigm. Next, we applied the median filter and wavelet transform to denoise the original signals and obtain HR and SpO2. Then, we used the Pearson correlation coefficient method to finalize the feature set, based on the extracted nine physical features. Finally, we built a 1D-CNN with LSTM model to classify teenagers’ physical fitness condition into four levels: excellent, good, medium, and poor, with an accuracy of 98.27% for boys’ physical fitness prediction, and 99.26% for girls’ physical fitness prediction. The experimental results provide evidence supporting the feasibility of predicting teenagers’ physical fitness levels by their running PPG recordings.
The increasing development in the field of biosensing technologies makes it feasible to monitor students’ physiological signals in natural learning scenarios. With the rise of mobile learning, educators are attaching greater importance to the learning immersion experience of students, especially with the global background of COVID-19. However, traditional methods, such as questionnaires and scales, to evaluate the learning immersion experience are greatly influenced by individuals’ subjective factors. Herein, our research aims to explore the relationship and mechanism between human physiological recordings and learning immersion experiences to eliminate subjectivity as much as possible. We collected electroencephalogram and photoplethysmographic signals, as well as self-reports on the immersive experience of thirty-seven college students during virtual reality and online learning to form the fundamental feature set. Then, we proposed an evaluation model based on a support vector machine and got a precision accuracy of 89.72%. Our research results provide evidence supporting the possibility of predicting students’ learning immersion experience by their EEGs and PPGs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.