A Cu(OH)2/Ni3S2 composite has been designed and in situ constructed on Cu foam substrate by facile two-step electrodeposition. Cu(OH)2 is achieved on Cu foam by galvanostatic electrodeposition, and the subsequent coating of Ni3S2 is realized by cyclic voltammetric (CV) electrodeposition. The introduction of Cu(OH)2 provides skeleton support and a large specific surface area for the Ni3S2 electrodeposition. Benefiting from the selection of different components and preparation technology, the Cu(OH)2/Ni3S2 composite exhibits enhanced electrochemical properties with a high specific capacitance of 4.85 F cm−2 at 2 mA cm−2 and long-term cyclic stability at 80.84% (4000 cycles).
Herein, nickel–cobalt sulfide (NCS) nanoflakes covering the surface of Cu(OH)2 nanorods were achieved by a facile two-step electrodeposition strategy. The effect of CH4N2S concentration on formation mechanism and electrochemical behavior is investigated and optimized. Thanks to the synergistic effect of the selected composite components, the Cu(OH)2/NCS composite electrode can deliver a high areal specific capacitance (Cs) of 7.80 F cm−2 at 2 mA cm−2 and sustain 5.74 F cm−2 at 40 mA cm−2. In addition, coulombic efficiency was up to 84.30% and cyclic stability remained 82.93% within 5000 cycles at 40 mA cm−2. This innovative work provides an effective strategy for the design and construction of hierarchical composite electrodes for the development of energy storage devices.
In this study, we rationally designed a facile stepwise route and successfully synthesized a Co(OH)2/Ni3S2 heterostructure supported on nickel foam (NF) as a binder-free electrode for energy storage. Galvanostatic deposition was first applied to produce uniform Co(OH)2 nanoflakes on NF. Then, Ni3S2 was applied to its surface by potentiostatic deposition to form a Co(OH)2/Ni3S2 heterostructure at room temperature. The added Co(OH)2 not only functions as a practical electrochemically active component but also provides support for the growth of Ni3S2, and the deposition amount of Ni3S2 is controlled by adjusting the electrodeposition duration of Ni3S2. Then, the electrochemical behaviors of the Co(OH)2/Ni3S2 composite can be optimized. A maximum areal specific capacitance (Cs) of 5.73 F cm−2 at 2 mA cm−2 was achieved, and the coulombic efficiency was as high as 94.14%. A capacitance retention of 84.38% was measured after 5000 charge–discharge cycles.
Herein, a scalable electrodeposition strategy is proposed to achieve hierarchical CuO/nickel–cobalt–sulfide (NCS) electrodes using two-step potentiostatic deposition followed by high-temperature calcination. The introduction of CuO provides support for the further deposition of NSC to ensure a high load of active electrode materials, thus generating more abundant active electrochemical sites. Meanwhile, dense deposited NSC nanosheets are connected to each other to form many chambers. Such a hierarchical electrode prompts a smooth and orderly transmission channel for electron transport, and reserves space for possible volume expansion during the electrochemical test process. As a result, the CuO/NCS electrode exhibits superior specific capacitance (Cs) of 4.26 F cm−2 at 20 mA cm−2 and remarkable coulombic efficiency of 96.37%. Furthermore, the cycle stability of the CuO/NCS electrode remains at 83.05% within 5000 cycles. The multistep electrodeposition strategy provides a basis and reference for the rational design of hierarchical electrodes to be applied in the field of energy storage.
Herein, a Cu(OH)2/Ni3S2 composite was successfully prepared through facile two-step electrodeposition. As the electrode substrate and the only copper source, the copper foam underwent surface oxidation by galvanostatic deposition technology to form Cu(OH)2, and the subsequent coverage of Ni3S2 was achieved by potentiostatic deposition. The Cu(OH)2 acts as a skeleton, providing support for Ni3S2 growth, thus providing more abundant electrochemical active sites. By virtue of the in situ growth strategy and the synergy of different components, the optimized Cu(OH)2/Ni3S2 electrode illustrates significantly enhanced pseudocapacitance performance, with an areal specific capacitance of 11.43 F cm−2 at 2 mA cm−2, good coulombic efficiency of 94.55%, and remarkable cyclic stability (83.33% capacitance retention after 5000 cycles).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.