BackgroundBuddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37.ResultsTen compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide) and late apoptotic cells (Annexin V+/PI+) increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively.ConclusionsColchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.
To discover novel microbial pesticide for controlling rice bacterial disease, polymyxin B1 and E2 were firstly isolated from the supernatant of fermentation broth of Paenibacillus polymyxa Y-1 by bioactivity tracking separation. It is shown that polymyxin B1 and E2 had remarkable in vitro inhibitory activities to Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) with the EC50 values of 0.19 μg/ml and 0.21 μg/ml against Xoo, and 0.32 μg/ml and 0.41 μg/ml against Xoc, respectively, which were better than those of Zhongshengmycin (0.31 μg/ml and 0.73 μg/ml) and Bismerthiazol (77.48 μg/ml and 85.30 μg/ml). Polymyxins B1 and E2 had good protection and curative activities against rice bacterial leaf blight (BLB) and rice bacterial leaf streak (BLS) in vivo. The protection and curative activities of polymyxins B1 (45.8 and 35.8%, respectively) and E2 (41.2 and 37.0%, respectively) to BLB were superior to those of Zhongshengmycin (34.8 and 29.8%, respectively) and Bismerthiazol (38.0 and 33.5%, respectively). Meanwhile, the protection and curative activities of polymyxins B1 (44.8 and 39.8%, respectively) and E2 (42.9 and 39.9%, respectively) to BLS were also superior to those of Zhongshengmycin (39.7 and 32.0%, respectively) and Bismerthiazol (41.5 and 34.3%, respectively). Polymyxin B1 exerted the anti-pesticide properties via destroying the cell integrity of Xoo, reducing its infectivity and enhancing rice resistance against pathogens through activating the phenylpropanoid biosynthesis pathway of rice. It is indicated that polymyxin B1 and E2 were potential microbial pesticides for controlling rice bacterial disease.
Microbial bactericides have been a research hotspot in recent years. In order to find new microbial fungicides for preventing and treating rice bacterial diseases, Paenibacillus polymyxa Y-1 (P. polymyxa Y-1) was isolated from Dendrobium nobile in this study, and the optimal medium was selected by a single-factor experiment, and then eight metabolites were isolated from P. polymyxa Y-1 fermentation broth by bioactivity tracking separation. The bioassay results showed that 2,4-di-tert-butylphenol, N-acetyl-5-methoxytryptamine, and P-hydroxybenzoic acid have good antibacterial activity against Xanthomonas oryzae pv. Oryzicola (Xoo) and Xanthomonas oryzae pv. oryzae (Xoc), with 50% effective concentration values of 49.45 μg/ml, 64.22 μg/ml, and 16.32 μg/ml to Xoo, and 34.33 μg/ml, 71.17 μg/ml, and 15.58 μg/ml to Xoc, respectively, compared with zhongshengmycin (0.42 and 0.82 μg/ml, respectively) and bismerthiazol (85.64 and 92.49 μg/ml, respectively). In vivo experiments found that 2,4-di-tert-butylphenol (35.9 and 35.4%, respectively), N-acetyl-5-methoxytryptamine (42.9 and 36.7%, respectively), and P-hydroxybenzoic acid (40.6 and 36.8%, respectively) demonstrated excellent protective and curative activity against rice bacterial leaf blight, which were better than that of zhongshengmycin (38.4 and 34.4%, respectively). In addition, after 2,4-di-tert-butylphenol, N-acetyl-5-methoxytryptamine, and P-hydroxybenzoic acid acted on rice, SOD, POD, and CAD defense enzymes increased under the same condition. In conclusion, these results indicated that the activity and mechanism research of new microbial pesticides were helpful for the prevention and control of rice bacterial diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.