Abstract-Magnetometer has received wide applications in attitude determination and scientific measurements. Calibration is an important step for any practical magnetometer use. The most popular three-axis magnetometer calibration methods are attitude-independent and have been founded on an approximate maximum likelihood estimation (ML) with a quartic subjective function, derived from the fact that the magnitude of the calibrated measurements should be constant in a homogeneous magnetic field. This paper highlights the shortcomings of those popular methods and proposes to use the quadratic optimal ML estimation instead for magnetometer calibration. Simulation and test results show that the optimal ML calibration is superior to the approximate ML methods for magnetometer calibration in both accuracy and stability, especially for those situations without sufficient attitude excitation. The significant benefits deserve the moderately increased computation burden. The main conclusion obtained in the context of magnetometer in this paper is potentially applicable to various kinds of three-axis sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.