Reward-predictive stimuli can increase an automatic response tendency, which needs to be counteracted by effortful response inhibition when this tendency is inappropriate for the current task. Here we investigated how the human brain implements this dynamic process by adopting a reward-modulated Simon task while acquiring EEG and fMRI data in separate sessions. In the Simon task, a lateral target stimulus triggers an automatic response tendency of the spatially corresponding hand, which needs to be overcome if the activated hand is opposite to what the task requires, thereby delaying the response. We associated high or low reward with different targets, the location of which could be congruent or incongruent with the correct response hand. High-reward targets elicited larger Simon effects than low-reward targets, suggesting an increase in the automatic response tendency induced by the stimulus location. This tendency was accompanied by modulations of the lateralized readiness potential over the motor cortex, and was inhibited soon after if the high-reward targets were incongruent with the correct response hand. Moreover, this process was accompanied by enhanced theta oscillations in medial frontal cortex and enhanced activity in a frontobasal ganglia network. With dynamical causal modeling, we further demonstrated that the connection from presupplementary motor area (pre-SMA) to right inferior frontal cortex (rIFC) played a crucial role in modulating the reward-modulated response inhibition. Our results support a dynamic neural model of reward-induced response activation and inhibition, and shed light on the neural communication between reward and cognitive control in generating adaptive behaviors.
Linguistic communication is often regarded as an action that serves a function to convey the speaker's goal to the addressee. Here, with an functional magnetic resonance imaging (fMRI) study and a lesion study, we demonstrated that communicative functions are represented in the human premotor cortex. Participants read scripts involving 2 interlocutors. Each script contained a critical sentence said by the speaker with a communicative function of either making a Promise, a Request, or a Reply to the addressee's query. With various preceding contexts, the critical sentences were supposed to induce neural activities associated with communicative functions rather than specific actions literally described by these sentences. The fMRI results showed that the premotor cortex contained more information, as revealed by multivariate analyses, on communicative functions and relevant interlocutors' attitudes than the perisylvian language regions. The lesion study results showed that, relative to healthy controls, the understanding of communicative functions was impaired in patients with lesions in the premotor cortex, whereas no reliable difference was observed between the healthy controls and patients with lesions in other brain regions. These findings convergently suggest the crucial role of the premotor cortex in representing the functions of linguistic communications, supporting that linguistic communication can be seen as an action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.