It remains unclear whether plant lncRNAs are responsive to Ca2+-channel blocking. When using the Ca2+-channel blocker, LaCl3, to treat germinated wheat seeds for 24 h, we found that both root length and mitosis were inhibited in the LaCl3-treated groups. The effect of the Ca2+-channel blocker was verified in three ways: a [Ca2+]cyt decrease detected using Fluo-3/AM staining, a decrease in the Ca content measured using inductively coupled plasma mass spectrometry, and an inhibition of Ca2+ influx detected using Non-invasive Micro-test Technology. Genome-wide high throughput RNA-seq and bioinformatical methods were used to identify lncRNAs, and found 177 differentially expressed lncRNAs that might be in responsive to Ca2+-channel blocking. Among these, 108 were up-regulated and 69 were down-regulated. The validity of identified lncRNAs data from RNA-seq was verified using qPCR. GO and KEGG analysis indicated that a number of lncRNAs might be involved in diverse biological processes upon Ca2+-channel blocking. Further GO analysis showed that 23 lncRNAs might play roles as transcription factor (TF); Moreover, eight lncRNAs might participate in cell cycle regulation, and their relative expressions were detected using qPCR. This study also provides diverse data on wheat lncRNAs that can deepen our understanding of the function and regulatory mechanism of Ca2+-channel blocking in plants.
In this study, when germinated Triticum aestivum L. seeds were treated with 0, 2, 4 and 6 mM ethyl glycol tetraacetic acid (EGTA), root growth was suppressed and the mitotic index decreased. These inhibitory effects were positively correlated with EGTA concentration. RT-PCR analysis revealed that the expression of several gene markers related to the G1/S transition of the cell cycle were significantly downregulated. Confocal microscopy of Fluo-3/AM-stained roots showed chelation of nearly all of the Ca 2+ within the root meristematic regions. Both random amplified polymorphic DNA (RAPD) and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques showed significant increases in the levels of genomic DNA polymorphisms and degree of DNA methylation. The study provides information concerning the impact of Ca 2+ chelator, EGTA, on the growth, expression of cell cycle transition marker genes, and changes in DNA structure and methylation in the wheat roots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.