To study the size effect of rock under quasistatic and dynamic conditions, the changes in compressive strength with the change in specimen size are measured. Cylindrical granite specimens with length-diameter ratios in the range of 0.5∼1 are used for uniaxial compression tests using an RMT testing machine and an SPHB impact testing machine. Under quasistatic loading, the failure modes of the specimens with different length-diameter ratios are different. The larger the size of the specimen structure is, the greater the probability of defects such as joints and micro cracks is and the smaller the influence of the specimen on the distribution of a three-dimensional stress state is. The rock strength decreases with increasing length-diameter ratio. Using the improved Weibull formula, the size of the specimen is expressed by the volume, and the calculated rock strength of different volumes is similar to the compressive strength from the quasistatic tests. Under dynamic loading, the dynamic compressive strengths of the specimens with different length-diameter ratios are similar, and the failure mode of the specimens is different from that under quasistatic loading. Soon after a crack appears in a specimen, the specimen splits. As the size of the specimens decreases, the fragments size to approach the millimeter scale. By improving the Weibull distribution formula and considering variation in strain rate caused by the size of the specimen, the dynamic compressive strength of rocks of different volumes is calculated by introducing the critical strain rate and related parameters, and the results are similar to the experimental dynamic compressive strength obtained. The improved Weibull formula based on the strength size effect can accurately describe the quasistatic and dynamic compressive strength laws.
In order to study the creep behavior of deep soft rock, gritstone was chosen as the research subject, and a rock triaxial rheometer (Rock 600-50) and acoustic emission (AE) system (SH-II) were used to carry out the grade unloading confining pressure creep test under a high-stress level. The test results showed that the lateral creep behavior of the gritstone was more prominent than the axial creep under the initial high confining pressure. Under the same confining pressure, the creep strain rate (the direction the same as strain) of the gritstone decreases with the increase in axial pressure. As shown by the AE count, AE signals were generated throughout the entire test process, indicating that the creep was a “microdynamic” process. The creep behavior was characterized by a significant confining pressure effect. As the confining pressure was decreased, the degree of creep increases significantly. During the test, the AE energy increased on the whole but decreases during the creep phase. During the entire test process, the overall energy in the constant deviatoric stress grade unloading of the confining pressure was 45% higher than that in the constant axial pressure grade unloading. The degree of failure of the rock was different in these two unloading creep tests, and the constant axial pressure grade unloading of the confining pressure entails greater damage than the constant deviatoric stress grade unloading of the confining pressure. The main reason was that the former had a lower confining pressure level and longer creep process than the latter, and the sample was mainly characterized by creep damage and large cumulative damage, while the latter features mainly unloading damage. Through the inversion of the Burgers constitutive model and nonlinear damage constitutive model for the creep test curve, the nonlinear constitutive equation can better fit the accelerated creep stage, which suggested that this model can describe the accelerated creep characteristics of the high-stress soft rock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.