Reactive oxygen species (ROS) which are continuously generated mainly by mitochondria, have been proved to play an important role in the stress signaling of cancer cells. Moreover, pentatricopeptide repeat (PPR) proteins have been suggested to take part in mitochondrial metabolism. However, the mechanisms integrating the actions of these distinct networks in urothelial carcinoma of the bladder (UCB) pathogenesis are elusive. In this study, we found that leucine rich pentatricopeptide repeat containing (LRPPRC) was frequently upregulated in UCB and that it was an independent prognostic factor in UCB. We further revealed that LRPPRC promoted UCB tumorigenesis by regulating the intracellular ROS homeostasis. Mechanistically, LRPPRC modulates ROS balance and protects UCB cells from oxidative stress via mt-mRNA metabolism and the circANKHD1/FOXM1 axis. In addition, the SRA stem-loop interacting RNA binding protein (SLIRP) directly interacted with LRPPRC to protect it from ubiquitination and proteasomal degradation. Notably, we showed that LRPPRC modulated the tumorigenesis of UCB cells in a circANKHD1-FOXM1-dependent manner. In conclusion, LRPPRC exerts critical roles in regulating UCB redox homeostasis and tumorigenesis, and is a prognostic factor for UCB; suggesting that LRPPRC may serve as an exploitable therapeutic target in UCB.
PurposeRecurrent renal cell carcinoma(reRCC) is associated with poor prognosis and the underlying mechanism is not yet clear. A comprehensive understanding of tumor microenvironment (TME) of reRCC may aid in designing effective anticancer therapies, including immunotherapies. Single-cell transcriptomics holds great promise for investigating the TME, however, this technique has not been used in reRCC. Here, we aimed to explore the difference in the TME and gene expression pattern between primary RCC (pRCC) and reRCC at single-cell level.Experimental designWe performed single-cell RNA sequencing analyses of 32,073 cells from 2 pRCC, 2 reRCC, and 3 adjacent normal kidney samples. 41 pairs of pRCC and reRCC samples were collected as a validation cohort to assess differences observed in single-cell sequencing. The prognostic significance of related cells and markers were studied in 47 RCC patients underwent immunotherapy. The function of related cells and markers were validated via in vitro and in vivo experiments.ResultsreRCC had reduced CD8+ T cells but increased cancer-associated fibroblasts (CAFs) infiltration compared with pRCC. Reduced CD8+ T cells and increased CAFs infiltration were significantly associated with a worse response from immunotherapy. Remarkably, CAFs showed substantial expression of LGALS1 (Gal1). In vitro, CAFs could induce CD8+ T cells apoptosis via Gal1. In vivo, knockdown of Gal1 in CAFs suppressed tumor growth, increased CD8+ T cells infiltration, reduced the proportion of apoptotic CD8+ T cells and enhanced the efficacy of immunotherapy.ConclusionsWe delineated the heterogeneity of reRCC and highlighted an innovative mechanism that CAFs acted as a suppressor of CD8+ T cells via Gal1. Targeting Gal1 combined with anti-PD1 showed promising efficacy in treating RCC.
Clinically, patients with urothelial carcinoma of the bladder (UCB) with tumor metastasis are incurable. To find new therapeutic strategies, the mechanisms underlying UCB invasion and metastasis should be further investigated. In this study, zinc finger and homeobox 3 (ZHX3) was first screened as a critical oncogenic factor associated with poor prognosis in a UCB dataset from The Cancer Genome Atlas (TCGA). These results were also confirmed in a large cohort of clinical UCB clinical samples. Next, we found that ZHX3 could promote the migration and invasion capacities of UCB cells both in vitro and in vivo. Mechanistically, coimmunoprecipitation (coIP) and mass spectrometry (MS) analysis indicated that ZHX3 was a target of tripartite motif 21 (TRIM21), which mediates its ubiquitination, and subsequent degradation. Notably, RNA‐seq analysis showed that ZHX3 repressed the expression of regulator of G protein signaling 2 (RGS2). Generally, our results suggest that ZHX3 plays an oncogenic role in UCB pathogenesis and might serve as a novel therapeutic target for UCB.
BackgroundProhibitin 1 (PHB) is a potential target for the treatment of urothelial carcinoma of the bladder (UCB). FL3 is a newly synthesized agent that inhibits cancer cell proliferation by targeting the PHB protein; however, the effect of FL3 in UCB cells remains unexplored.MethodsFL3 was identified to be a potent inhibitor of UCB cell viability using CCK-8 (cell counting kit-8) assay. Then a series of in vitro and in vivo experiments were conducted to further demonstrate the inhibitory effect of FL3 on UCB cell proliferation and to determine the underlying mechanisms.ResultsFL3 inhibited UCB cell proliferation and growth both in vitro and in vivo. By targeting the PHB protein, FL3 inhibited the interaction of Akt and PHB as well as Akt-mediated PHB phosphorylation, which consequently decreases the localization of PHB in the mitochondria. In addition, FL3 treatment resulted in cell cycle arrest in the G2/M phase, and this inhibitory effect of FL3 could be mimicked by knockdown of PHB.Through the microarray analysis of mRNA expression after FL3 treatment and knockdown of PHB, we found that the mRNA expression of the growth arrest and DNA damage-inducible alpha (GADD45α) gene were significantly upregulated. When knocked down the expression of GADD45α, the inhibitory effect of FL3 on cell cycle was rescued, suggesting that FL3-induced cell cycle inhibition is GADD45α dependent.ConclusionOur data provide that FL3 inhibits the interaction of Akt and PHB, which in turn activates the GADD45α-dependent cell cycle inhibition in the G2/M phase.Electronic supplementary materialThe online version of this article (10.1186/s13046-018-0695-5) contains supplementary material, which is available to authorized users.
Background Radiotherapy may work synergistically with immunotherapy and targeted agents. We aimed to assess the safety and outcomes of stereotactic body radiotherapy (SBRT) plus non-first-line programmed death-1 (PD-1) inhibitors and targeted agents (TA) in metastatic renal cell carcinoma (mRCC). Methods We retrospectively reviewed 74 patients treated with non-first-line PD-1 inhibitors plus TA in non-first-line setting. Survival outcomes were calculated from the anti-PD-1 treatment using the Kaplan–Meier method. Univariate and multivariate analyses were performed by Cox proportional hazards models. Results Thirty-two (43.2%) patients received anti-PD-1/TA therapy alone (anti-PD-1/TA alone group), and 42 (56.8%) received SBRT in addition (anti-PD-1/TA + SBRT group). The median duration of first-line therapy was 8.6 months. Patients in the anti-PD-1/TA + SBRT group had significantly longer overall survival (OS) (38.5 vs 15.4 months; P = 0.022). On multivariate analysis, oligometastasis, ECOG performance status 0–1, anti-PD-1/TA + SBRT, and duration of first-line therapy ≥ 8.6 months were predictors for OS. The addition of SBRT was associated with improved OS in patients with clear-cell type (HR 0.19; 95% CI 0.07–0.55; P = 0.002) and duration of first-line therapy ≥ 8.6 months (HR 0.22; 95% CI 0.06–0.88; P = 0.032). Grade ≥ 3 toxicities occurred in 23 patients (54.8%) in the anti-PD-1/TA + SBRT group, and in 21 patients (65.6%) in the anti-PD-1/TA alone group. Conclusions Incorporating SBRT into anti-PD-1/TA therapy is safe and tolerable. Further investigation is needed, particularly in patients with clear-cell histology and a longer duration of response to first-line antiangiogenic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.