Located in the inland arid area of Central Asia and northwest China, Xinjiang has recently received heightened concerns over soil water erosion, which is highly related with the sustainable utilization of barren soil and limited water resources. Data from the national soil erosion survey of China (1985-2011) and Xinjiang statistical yearbook (2000 was used to analyze the trend, intensity, and serious soil water erosion regions. Results showed that the water erosion area in Xinjiang was 87.6×10 3 km 2 in 2011, mainly distributed in the Ili river valley and the northern and southern Tian Mountain. Soil erosion gradient was generally slight and the average erosion modulus was 2184 t/(km 2 ·a). During the last 26 years, the water erosion area in Xinjiang decreased by 23.2%, whereas the intensity was still increasing. The driving factors from large to small impact included: population boom and human activities> vegetation degradation> rainfall and climate change> topography and soil erodibility> tectonics movement. Soil water erosion resulted in eco-environmental and socioeconomic losses, such as destroying farmland and grassland, triggering floods, sedimentation of reservoirs, damaging transportation and irrigation facilities, and aggravating poverty. A landscape ecological design approach is suggested for integrated control of soil erosion. Currently, an average of 2.07×10 3 km 2 of formerly eroded area is conserved each year. This study highlighted the importance and longevity of soil and water conservation efforts in Xinjiang, and offered some suggestions on ecological restoration and combating desertification in arid regions of Central Asia.
Phosphorus (P) deficiencies are widespread in calcareous soils. The poor availability of nitrogen (N) and P in soils often restricts crop growth. However, the effects of P addition on plant growth and plant nutrient transport changes during the establishment of Leymus chinensis fields in Xinjiang are not clear. We investigated the responses of Leymus chinensis biomass and nutrient absorption and utilization to changes in soil N and P by adding P (0, 15.3, 30.6, and 45.9 kg P ha−1 year−1) with basally applied N fertilizer (150 kg N ha−1 year−1). The results showed that (a) Principal component analysis (PCA) of biomass, nutrient accumulation, soil available P, and soil available N during the different periods of Leymus chinensis growth showed that their cumulative contributions during the jointing and harvest periods reached 95.4% and 88%, respectively. (b) Phosphorus use efficiency (PUE) increased with the increase of P fertilizer gradient and then decreased and the maximum PUE was 13.14% under moderate P addition. The accumulation of biomass and nutrients in Leymus chinensis can be effectively improved by the addition of P fertilizer at 30.6 kg ha−1. Different P additions either moderately promoted or excessively inhibited Leymus chinensis growth and nutrient utilization.
Soil depth reflects the quantity and ecosystem service functions of soil resources. However, there is no universal standard to measure soil depth at present, and digital soil mapping approaches for predicting soil depth at the regional scale remain immature. Using observation of soil profile morphology, we compared the soil depth nomenclatures from the World Reference Base for Soil Resources, Chinese Soil Taxonomy, and Soil Taxonomy. For this study, shallow soils were defined as those with an effective soil depth < 100 cm. Based on legacy data and field soil survey, the spatial distribution of shallow soils in Xinjiang, China, and the main controlling environmental factors were explored. Results showed that shallow soils in Xinjiang are mainly distributed in high altitude regions such as the Tian Mountains. At the regional scale, significant correlations were observed between soil depth and climate factors, as well as between soil depth and vegetation fractional coverage. Contrary to previous conclusions at small spatial scales, terrain attributes could not explain soil depth variation at the regional scale. This study addressed knowledge gaps on soil depth prediction at regional scales while elucidating climate‐vegetation‐soil coevolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.