Background
Gestational diabetes mellitus (GDM) is a common endocrine metabolic disease, involving a carbohydrate intolerance of variable severity during pregnancy. The incidence of GDM-related complications and adverse pregnancy outcomes has declined, in part, due to early screening. Machine learning (ML) models are increasingly used to identify risk factors and enable the early prediction of GDM.
Objective
The aim of this study was to perform a meta-analysis and comparison of published prognostic models for predicting the risk of GDM and identify predictors applicable to the models.
Methods
Four reliable electronic databases were searched for studies that developed ML prediction models for GDM in the general population instead of among high-risk groups only. The novel Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias of the ML models. The Meta-DiSc software program (version 1.4) was used to perform the meta-analysis and determination of heterogeneity. To limit the influence of heterogeneity, we also performed sensitivity analyses, a meta-regression, and subgroup analysis.
Results
A total of 25 studies that included women older than 18 years without a history of vital disease were analyzed. The pooled area under the receiver operating characteristic curve (AUROC) for ML models predicting GDM was 0.8492; the pooled sensitivity was 0.69 (95% CI 0.68-0.69; P<.001; I2=99.6%) and the pooled specificity was 0.75 (95% CI 0.75-0.75; P<.001; I2=100%). As one of the most commonly employed ML methods, logistic regression achieved an overall pooled AUROC of 0.8151, while non–logistic regression models performed better, with an overall pooled AUROC of 0.8891. Additionally, maternal age, family history of diabetes, BMI, and fasting blood glucose were the four most commonly used features of models established by the various feature selection methods.
Conclusions
Compared to current screening strategies, ML methods are attractive for predicting GDM. To expand their use, the importance of quality assessments and unified diagnostic criteria should be further emphasized.
BackgroundsDiabetic retinopathy (DR) is a common diabetic ocular disease characterized by retinal ganglion cell (RGC) changes. An abnormal environment, hyperglycemia, may progressively alter the structure and function of RGCs, which is a primary pathological feature of retinal neurodegeneration in DR. Accumulated studies confirmed autophagy and senescence play a vital role in DR; however, the underlying mechanisms need to be clarified.MethodsThis study included the microarray expression profiling dataset GSE60436 from Gene Expression Omnibus (GEO) to conduct the bioinformatics analysis. The R software was used to identify autophagy-related genes (ARGs) that were differentially expressed in fibrovascular membranes (FVMs) and normal retinas. Co-expression and tissue-specific expression were elicited for the filtered genes. The genes were then analyzed by ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Set Enrichment Analysis (GSEA). R28 cells were cultured with high glucose, detected by reverse transcription-quantitative (RT-qPCR) and stained by apoptosis kit.ResultsIn the retina, 31 differentially expressed ARGs (24 up-regulated genes) were discovered and enriched. The enrichment results revealed that differentially expressed ARGs were significantly enriched in autophagy, apoptosis, aging, and neural function. Four hub genes (i.e., TP53, CASP1, CCL2, and CASP1) were significantly up-regulated. Upregulation of cellular autophagy and apoptosis level was detected in the hyperglycemia model in vitro.ConclusionsOur results provide evidence for the autophagy and cellular senescence mechanisms involved in retinal hyperglycemia injury, and the protective function of autophagy is limited. Further study may favour understanding the disease progression and neuroprotection of DR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.