Computer simulation models have been widely used to generate hydrometeorological forecasts. As the raw forecasts contain uncertainties arising from various sources, including model inputs and outputs, model initial and boundary conditions, model structure, and model parameters, it is necessary to apply statistical postprocessing methods to quantify and reduce those uncertainties. Different postprocessing methods have been developed for meteorological forecasts (e.g., precipitation) and for hydrological forecasts (e.g., streamflow) due to their different statistical properties. In this paper, we conduct a comprehensive review of the commonly used statistical postprocessing methods for both meteorological and hydrological forecasts. Moreover, methods to generate ensemble members that maintain the observed spatiotemporal and intervariable dependency are reviewed. Finally, some perspectives on the further development of statistical postprocessing methods for hydrometeorological ensemble forecasting are provided.
Accurate precipitation forecasts are important for applications such as the prevention and mitigation of water-related disasters and water resource management. Ensemble precipitation forecasts have been provided by meteorological ensemble prediction systems to quantify forecast uncertainty. Ensemble precipitation forecasts are important for further applications such as ensemble hydrological forecasting and risk-based decision-making in water management (e.g.,
Statistical postprocessing methods can be used to correct bias and dispersion error in raw ensemble forecasts from numerical weather prediction models. Existing postprocessing models generally perform well when they are assessed on all events, but their performance for extreme events still needs to be investigated. Commonly used joint probability postprocessing models are based on the correlation between forecasts and observations. Because the correlation may be lower for extreme events as a result of larger forecast uncertainty, the dependence between forecasts and observations can be asymmetric with respect to the magnitude of the precipitation. However, the constant correlation coefficient in the traditional joint probability model lacks the flexibility to model asymmetric dependence. In this study, we formulated a new postprocessing model with a decreasing correlation coefficient to characterize asymmetric dependence. We carried out experiments using Global Ensemble Forecast System reforecasts for daily precipitation in the Huai River basin in China. The results show that, although it performs well in terms of continuous ranked probability score or reliability for all events, the traditional joint probability model suffers from overestimation for extreme events defined by the largest 2.5% or 5% of raw forecasts. On the contrary, the proposed variable-correlation model is able to alleviate the overestimation and achieves better reliability for extreme events than the traditional model. The proposed variable-correlation model can be seen as a flexible extension of the traditional joint probability model to improve the performance for extreme events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.