In this study, we evaluated the performance of three blood culture systems in a Chinese tertiary-care hospital. Samples of simulated bacteremia were prepared using 10 mL of fresh blood from healthy humans and bacterial suspensions of known cell density. Portions of the specimens were treated with an antibiotic or antifungal drug at specified concentrations to simulate antibacterial drug treatment. We analyzed three blood culture systems: BACTEC Plus, BacT/Alert, and VersaTREK. Both time-to-detection (TTD) of 10 types of bacteria and five types of yeasts in samples without antibiotic treatment and positive detection rate of samples treated with different concentrations of antibiotic or antifungal drugs were compared among the culture systems. We also retrospectively analyzed the use of the culture systems in our hospital from 2015 to 2018. In the simulated study, in the absence of antibiotics, the VersaTREK REDOX 1 displayed the shortest TTD for Pseudomonas aeruginosa, Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae, Candida albicans , and Candida glabrata ( P < 0.001). Among the anaerobically cultured samples, BACTEC lytic/10 anaerobic/F displayed the shortest TTD for Escherichia coli, S. aureus, Enterococcus faecalis, S. pneumoniae, Bacteroides fragilis , and Bacteroides vulgatus ( P < 0.001). Comparatively, BacT/Alert FA/FN showed no advantages. In antibiotic-treated samples, overall recovery rates for the BACTEC, BacT/Alert, and VersaTREK systems were, were 70.2, 43.7, and 27.4%, respectively. BACTEC facilitated higher recovery rate than the other two systems ( P < 0.001). In antifungal treatment, the overall recovery rates for the BACTEC, BacT/Alert, and VersaTREK systems were 93.9, 98.3, and 69.4%, respectively. BACTEC Plus showed a recovery rate comparable to that of BacT/Alert ( P = 0.835), and the recovery rate of both these systems was higher than that of VersaTREK ( P < 0.001). The TTD values and positive rates determined in the retrospective study were consistent with those obtained in the simulated study. The combination of BACTEC PLUS Aerobic/F and BACTEC lytic/10 anaerobic/F culture systems displayed the best clinical performance. Furthermore, the BacT/Alert FAN culture system was found to be more resistant to antifungal drugs and levofloxacin, whereas the VersaTREK system is considered more suitable for primary blood cultures without antibiotic supplementation.
Ferrocenylmethanol (Fc-OH) is included in β-cyclodextrin (β-CD) to form the β-CD-Fc-OH complex by host-guest supramolecular interaction. β-CD dissociates from the β-CD-Fc-OH complex due to the conversion of Fc-OH to Fc +-OH under a stimulus of oxidant. In our study, Fc-OH is oxidized after a series of enzymatic reactions of creatinine, which blocks the other means for oxidation of Fc-OH. And the background noise is reduced for testing for serum creatinine (sCr). The chronoamperometry signal for creatinine (with a constant potential-0.3 V vs. Ag/AgCl) increases linearly in the 1-1000 μM range, with a limit of detection as low as 0.5 μM. The amperometric potential of-0.3 V greatly prevents the interference of various redox substances in serum. The biosensor was used to test 120 clinical specimens and the results showed a linear correlation with the biochemical analyzer (R 2 = 0.9885). The biosensor could be applied to clinical trials and offers good prospects for clinical sCr detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.