Recent advancements in high-performance networking interconnect significantly narrow the performance gap between intra-node and inter-node communications, and open up opportunities for distributed memory platforms to enforce cache coherency among distributed nodes. To this end, we propose GAM, an efficient distributed in-memory platform that provides a directory-based cache coherence protocol over remote direct memory access (RDMA). GAM manages the free memory distributed among multiple nodes to provide a unified memory model, and supports a set of userfriendly APIs for memory operations. To remove writes from critical execution paths, GAM allows a write to be reordered with the following reads and writes, and hence enforces partial store order (PSO) memory consistency. A lightweight logging scheme is designed to provide fault tolerance in GAM. We further build a transaction engine and a distributed hash table (DHT) atop GAM to show the ease-of-use and applicability of the provided APIs. Finally, we conduct an extensive micro benchmark to evaluate the read/write/lock performance of GAM under various workloads, and a macro benchmark against the transaction engine and DHT. The results show the superior performance of GAM over existing distributed memory platforms.
Personalized PageRank (PPR) is a well-known proximity measure in graphs. To meet the need for dynamic PPR maintenance, recent works have proposed a local update scheme to support incremental computation. Nevertheless, sequential execution of the scheme is still too slow for highspeed stream processing. Therefore, we are motivated to design a parallel approach for dynamic PPR computation. First, as updates always come in batches, we devise a batch processing method to reduce synchronization cost among every single update and enable more parallelism for iterative parallel execution. Our theoretical analysis shows that the parallel approach has the same asymptotic complexity as the sequential approach. Second, we devise novel optimization techniques to effectively reduce runtime overheads for parallel processes. Experimental evaluation shows that our parallel algorithm can achieve orders of magnitude speedups on GPUs and multi-core CPUs compared with the state-of-the-art sequential algorithm.
Subgraph enumeration is important for many applications such as network motif discovery, community detection, and frequent subgraph mining. To accelerate the execution, recent works utilize graphics processing units (GPUs) to parallelize subgraph enumeration. The performances of these parallel schemes are dominated by the set intersection operations which account for up to 95% of the total processing time. (Un)surprisingly, a significant portion (as high as 99%) of these operations is actually redundant, i.e., the same set of vertices is repeatedly encountered and evaluated. Therefore, in this paper, we seek to salvage and recycle the results of such operations to avoid repeated computation. Our solution consists of two phases. In the first phase, we generate a reusable plan that determines the opportunity for reuse. The plan is based on a novel reuse discovery mechanism that can identify available results to prevent redundant computation. In the second phase, the plan is executed to produce the subgraph enumeration results. This processing is based on a newly designed reusable parallel search strategy that can efficiently maintain and retrieve the results of set intersection operations. Our implementation on GPUs shows that our approach can achieve up to 5 times speedups compared with the state-of-the-art GPU solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.