The air-door is an important device for adjusting the air flow in a mine. It opens and closes within a short time owing to transportation and other factors. Although the switching sensor alone can identify the air-door opening and closing, it cannot relate it to abnormal fluctuations in the wind speed. Large fluctuations in the wind-velocity sensor data during this time can lead to false alarms. To overcome this problem, we propose a method for identifying air-door opening and closing using a single wind-velocity sensor. A multi-scale sliding window (MSSW) is employed to divide the samples. Then, the data global features and fluctuation features are extracted using statistics and the discrete wavelet transform (DWT). In addition, a machine learning model is adopted to classify each sample. Further, the identification results are selected by merging the classification results using the non-maximum suppression method. Finally, considering the safety accidents caused by the air-door opening and closing in an actual production mine, a large number of experiments were carried out to verify the effect of the algorithm using a simulated tunnel model. The results show that the proposed algorithm exhibits superior performance when the gradient boosting decision tree (GBDT) is selected for classification. In the data set composed of air-door opening and closing experimental data, the accuracy, precision, and recall rates of the air-door opening and closing identification are 91.89%, 93.07%, and 91.07%, respectively. In the data set composed of air-door opening and closing and other mine production activity experimental data, the accuracy, precision, and recall rates of the air-door opening and closing identification are 89.61%, 90.31%, and 88.39%, respectively.
To overcome the false alarm problem that arises for mine wind-velocity sensors due to air-door and mine-car operation, a wind-velocity disturbance identification method based on the wavelet packet transform and gradient lifting decision tree is proposed. In this method, a multi-scale sliding window discretizes continuous wind-velocity monitoring data, the wavelet packet transform extracts the hidden features of discrete data, and a gradient lifting decision tree multi-disturbance classification model is established. Based on the overlap degree rule, the disturbance identification results are merged, modified, combined, and optimized. In accordance with a least absolute shrinkage and selection operator regression, the air-door operation information is further extracted. A similarity experiment is performed to verify the method performance. For the disturbance identification task, the recognition accuracy, accuracy, and recall of the proposed method are 94.58%, 95.70% and 92.99%, respectively, and for the task involving further extraction of disturbance information related to air-door operation, those values are 72.36%, 73.08%, and 71.02%, respectively. This algorithm gives a new recognition method for abnormal time series data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.