In the present study, the effects of hyaluronic acid (HA) combined with chitosan conduit on peripheral nerve scarring and regeneration were investigated in a rat model of peripheral nerve crush injury. A total of 60 Sprague-Dawley rats were randomly distributed into four groups (15 rats in each group), in which the nerve was either not treated (control group) or treated with chitosan conduit, hyaluronic acid, or chitosan conduit coupled with hyaluronic acid following clamp injury to the sciatic nerve. The surgical sites were evaluated by assessing the sciatic functional index, the degree of scar adhesions, the numbers of myelinated nerve fibers, the average diameter of myelinated nerve fibers and the myelin sheath thickness. Larger epineurial scar thickness was observed in the control groups compared with the treatment groups at 4, 8 and 12 weeks following surgery. There was no significant difference in scar adhesion among the four groups at 4 weeks following surgery. However, animals receiving chitosan coupled with HA demonstrated better neural recovery, as measured by reduced nerve adherence to surrounding tissues, less scar adhesion, increased number of axons, nerve fiber diameter and myelin thickness. In conclusion, the application of chitosan conduit combined with HA, to a certain extent, inhibited sciatic nerve extraneural scaring and adhesion, and promoted neural regeneration and recovery.
To determine better solutions for postoperative nerve functional recovery, the effects of chitosan and hyaluronate on perineural scar formation and neural function recovery were investigated in 40 rabbits. Rabbits were randomized into 4 groups: A (chitosan), B (chitosan + hyaluronate), C (hyaluronate) and D (control). The rabbits underwent the same parotidectomy surgery, but different materials were used to cover the operated nerves. By evaluating specific indicators, including vibrissae motion tests, neural electrophysiological examinations and extraneural examinations, it was revealed that the amplitude of vibrissae motion of all groups had increased 6 weeks after surgery. The recovery of Group B was superior compared with all other groups at 4 and 12 weeks post-surgery; however no significant differences were detected. Group B exhibited a great number of nerve fibers, thicker myelin sheath and greater nerve conduction velocity. In summary, the use of a chitosan conduit combined with sodium hyaluronate gel may prevent perineural scar formation in facial nerves and promote nerve functional recovery.
Background: Effects of hypertension, type 2 diabetes and obesity on Bell’s palsy risk remains unclear. The aim of the study was to explore whether hypertension and these metabolic disorders promoted Bell’s palsy at the genetic level.Methods: Genetic variants from genome-wide association studies for hypertension, type 2 diabetes, body mass index and several lipid metabolites were adopted as instrumental variables. Two-sample Mendelian randomization including IVW and MR-Egger was used to measure the genetic relationship between the exposures and Bell’s palsy. Sensitivity analyses (i.e., Cochran’s Q test, MR-Egger intercept test, “leave-one-SNP-out” analysis and funnel plot) were carried out to assess heterogeneity and horizontal pleiotropy. All statistical analyses were performed using R software.Results: Hypertension was significantly associated with the increased risk of Bell’s palsy (IVW: OR = 2.291, 95%CI = 1.025–5.122, p = 0.043; MR-Egger: OR = 16.445, 95%CI = 1.377–196.414, p = 0.029). Increased level of LDL cholesterol might upexpectedly decrease the risk of the disease (IVW: OR = 0.805, 95%CI = 0.649–0.998, p = 0.048; MR-Egger: OR = 0.784, 95%CI = 0.573–1.074, p = 0.132). In addition, type 2 diabetes, body mass index and other lipid metabolites were not related to the risk of Bell’s palsy. No heterogeneity and horizontal pleiotropy had been found.Conclusion: Hypertension might be a risk factor for Bell’s palsy at the genetic level, and LDL cholesterol might reduce the risk of the disease. These findings (especially for LDL cholesterol) need to be validated by further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.