Liver cirrhosis is the end stage of chronic liver diseases without approved clinical drugs. In this study, a new strategy that uses a C−C chemokine receptor 2 (CCR2) small interfering RNA silencing (siCcr2)-based therapy by loading multivalent siCcr2 with tetrahedron framework DNA nanostructure (tFNA) vehicle (tFNA-siCcr2) was established to attenuate liver fibrosis. tFNA-siCcr2 was successfully synthesized without changing the physiochemical properties of tFNA. Compared to the naked siCcr2 molecule, the tFNA-siCcr2 complex altered the accumulation from the kidney to the liver after the intraperitoneal injection. The tFNA-siCcr2 complex also prolonged hepatic retention and mainly colocalized within macrophages and endothelial cells. tFNA-siCcr2 efficiently silenced CCR2 and significantly ameliorated liver fibrosis in prevention and treatment interventions. Single-cell RNA sequencing followed by experimental validation suggested that tFNA-siCcr2 can restore the immune cell landscape and construct an antifibrotic niche by inhibiting profibrotic macrophage and neutrophil accumulation in the murine fibrotic liver. Molecularly, the tFNA-siCcr2 complex reduced inflammatory mediator production by inactivating the NF-κB signaling pathway. In conclusion, the tFNA-based liver-targeted tFNA-siCcr2 delivery complex efficiently ameliorated liver fibrosis by restoring the immune cell landscape and constructing an antifibrotic niche, which makes the tFNA-siCcr2 complex a potential therapeutic candidate for the clinical treatment of liver cirrhosis.
Background Hepatocyte-cholangiocyte transdifferentiation (HCT) is a potential origin of proliferating cholangiocytes in liver regeneration after chronic injury. This study aimed to determine HCT after chronic liver injury, verify the impacts of HCT on liver repair, and avoid harmful regeneration by understanding the mechanism. Methods A thioacetamide (TAA)-induced liver injury model was established in wild-type (WT-TAA group) and COX-2 panknockout (KO-TAA group) mice. HCT was identified by costaining of hepatocyte and cholangiocyte markers in vivo and in isolated mouse hepatocytes in vitro. The biliary tract was injected with ink and visualized by whole liver optical clearing. Serum and liver bile acid (BA) concentrations were measured. Either a COX-2 selective inhibitor or a β-catenin pathway inhibitor was administered in vitro. Results Intrahepatic ductular reaction was associated with COX-2 upregulation in chronic liver injury. Immunofluorescence and RNA sequencing indicated that atypical cholangiocytes were characterized by an intermediate genetic phenotype between hepatocytes and cholangiocytes and might be derived from hepatocytes. The structure of the biliary system was impaired, and BA metabolism was dysregulated by HCT, which was mediated by the TGF-β/β-catenin signaling pathway. Genetic deletion or pharmaceutical inhibition of COX-2 significantly reduced HCT in vivo. The COX-2 selective inhibitor etoricoxib suppressed HCT through the TGF-β-TGFBR1-β-catenin pathway in vitro. Conclusions Atypical cholangiocytes can be derived from HCT, which forms a secondary strike by maldevelopment of the bile drainage system and BA homeostasis disequilibrium during chronic liver injury. Inhibition of COX-2 could ameliorate HCT through the COX-2-TGF-β-TGFBR1-β-catenin pathway and improve liver function.
The accumulation of extracellular matrix (ECM) proteins in the liver leads to liver fibrosis and end-stage liver cirrhosis. C-C motif chemokine receptor 2 (CCR2) is an attractive target for treating liver fibrosis. However, limited investigations have been conducted to explore the mechanism by which CCR2 inhibition reduces ECM accumulation and liver fibrosis, which is the focus of this study. Liver injury and liver fibrosis were induced by carbon tetrachloride (CCl4) in wild-type mice and Ccr2 knockout (Ccr2 -/-) mice. CCR2 was upregulated in murine and human fibrotic livers. Pharmacological CCR2 inhibition with cenicriviroc (CVC) reduced ECM accumulation and liver fibrosis in prevention and treatment administration. In single-cell RNA sequencing (scRNA-seq), CVC was demonstrated to alleviate liver fibrosis by restoring the macrophage and neutrophil landscape. CVC administration and CCR2 deletion can also inhibit the hepatic accumulation of inflammatory FSCN1 + macrophages and HERC6 + neutrophils. Pathway analysis indicated that the STAT1, NFκB, and ERK signaling pathways might be involved in the antifibrotic effects of CVC. Consistently, Ccr2 knockout decreased phosphorylated STAT1, NFκB, and ERK in the liver. In vitro, CVC could transcriptionally suppress crucial profibrotic genes (Xaf1, Slfn4, Slfn8, Ifi213, and Il1β) in macrophages by inactivating the STAT1/NFκB/ERK signaling pathways. In conclusion, this study depicts a novel mechanism by which CVC alleviates ECM accumulation in liver fibrosis by restoring the immune cell landscape. CVC can inhibit profibrotic gene transcription via inactivating the CCR2-STAT1/NFκB/ERK signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.