In wireless sensor networks, in-network data processing plays an important role to reduce the transmitting energy and data redundancy in large-scale sensor networks. However, the security of wireless sensor networks is a challenging problem with the compromised sensor nodes in the networks. This paper introduced a trusted secure in-network data processing schema to enhance the data security of wireless sensor networks. The secure i...
Statistical contact potentials and bead-spring models have been widely used for computational studies of protein folding. However, there has been speculation that systematic error may arise in the contact energy calculations when the statistical potentials are deduced under the assumption that the chain connectivity in proteins can be ignored. To address this issue, we have performed molecular-dynamics simulations to study the structure and dynamics of a simple liquid system in which the beads are either connected or unconnected with springs. Results from the present study provide useful information for assessing the accuracy of the statistical potentials for protein structure simulations.
The devices in the Internet of things (IoT) gain capability of sustainable operation when they harvest energy from ambient sources. Fluctuation in the harvested energy may cause the energy‐harvesting IoT devices to suffer from frequent energy shortage, which may bring in intolerable packet delay or packet discarding. It is important to design a low‐delay packet delivery scheme that adapts to variation in the harvested energy. In this paper, we present the timely data delivery (TDD) scheme for the IoT devices. Using Markov chain, we develop a probability model for the TDD scheme, which leads to the expected number of packets delivered in an operation cycle, the expected numbers of packets waiting in the data buffer in an operation cycle and an energy‐harvesting cycle, and the expected packet delay. Additionally, we formulate the optimization problem that minimizes the packet delay in the TDD scheme, and the solution to the optimization problem yields the optimal parameters for the IoT devices to determine when to harvest energy and when to deliver data under the TDD scheme. The simulation results show that the proposed TDD scheme outperforms the existing schemes in terms of packet delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.