The diffuse-type gastric cancer (DGC) is a subtype of gastric cancer with the worst prognosis and few treatment options. Here we present a dataset from 84 DGC patients, composed of a proteome of 11,340 gene products and mutation information of 274 cancer driver genes covering paired tumor and nearby tissue. DGC can be classified into three subtypes (PX1–3) based on the altered proteome alone. PX1 and PX2 exhibit dysregulation in the cell cycle and PX2 features an additional EMT process; PX3 is enriched in immune response proteins, has the worst survival, and is insensitive to chemotherapy. Data analysis revealed four major vulnerabilities in DGC that may be targeted for treatment, and allowed the nomination of potential immunotherapy targets for DGC patients, particularly for those in PX3. This dataset provides a rich resource for information and knowledge mining toward altered signaling pathways in DGC and demonstrates the benefit of proteomic analysis in cancer molecular subtyping.
Background As the most abundant epigenetic modification on mRNAs and long non‐coding RNAs, N6‐methyladenosine (m6A) modification extensively exists in mammalian cells. Controlled by writers (methyltransferases), readers (signal transducers), and erasers (demethylases), m6A influences mRNA structure, maturation, and stability, thus negatively regulating protein expression in a post‐translational manner. Nevertheless, current understanding of m6A's roles in tumorigenesis, especially in gastric cancer (GC) remains to be unveiled. In this study, we assessed m6A's clinicopathological relevance to GC and explored the underlying mechanisms. Methods By referring to a proteomics‐based GC cohort we previously generated and the TCGA‐GC cohort, we merged expressions of canonical m6A writers (METTL3/METTL14), readers (YTHDF1/YTHDF2/YTHDF3), and erasers (ALKBH5/FTO), respectively, as W, R, and E signatures to represent m6A modification. We stratified patients according to these signatures to decipher m6A's associations with crucial mutations, prognosis, and clinical indexes. m6A's biological functions in GC were predicted by gene set enrichment analysis (GSEA) and validated by in vitro experiments. Results We discovered that W and R were potential tumor suppressive signatures, while E was a potential oncogenic signature in GC. According to W/R/E stratifications, patients with low m6A‐indications were accompanied with higher mutations of specific genes ( CDH1 , AR , GLI3 , SETBP1 , RHOA , MUC6 , and TP53 ) and also demonstrated adverse clinical outcomes. GSEA suggested that reduced m6A was correlated with oncogenic signaling and phenotypes. Through in vitro experiments, we proved that m6A suppression (represented by METTL14 knockdown) promoted GC cell proliferation and invasiveness through activating Wnt and PI3K‐Akt signaling, while m6A elevation (represented by FTO knockdown) reversed these phenotypical and molecular changes. m6A may also be involved in interferon signaling and immune responses of GC. Conclusions Our work demonstrated that low‐m6A signatures predicted adverse clinicopathological features of GC, while the reduction of RNA m6A methylation activated oncogenic Wnt/PI3K‐Akt signaling and promoted malignant phenotypes of GC cells.
First-order, or discontinuous, synchronization transition, i.e. an abrupt and irreversible phase transition with hysteresis to the synchronized state of coupled oscillators, has attracted much attention along the past years. We here report the analytical solution of a generalized Kuramoto model, and derive a series of exact results for the first-order synchronization transition, including i) the exact, generic, solutions for the critical coupling strengths for both the forward and backward transitions, ii) the closed form of the forward transition point and the linear stability analysis for the incoherent state (for a Lorentzian frequency distribution), and iii) the closed forms for both the stable and unstable coherent states (and their stabilities) for the backward transition. Our results, together with elucidating the first-order nature of the transition, provide insights on the mechanisms at the basis of such a synchronization phenomenon.
Kaempferol belongs to the flavonoid family and has been used in traditional folk medicine. Here, we investigated the antitumor effects of kaempferol on cell cycle arrest and autophagic cell death in SK-HEP-1 human hepatic cancer cells. Kaempferol decreased cell viability as determined by MTT assays and induced a G2/M phase cell cycle arrest in a concentration-dependent manner. Kaempferol did not induce DNA fragmentation, apoptotic bodies or caspase-3 activity in SK-HEP-1 cells as determined by DNA gel electrophoresis, DAPI staining and caspase-3 activity assays, respectively. In contrast, kaempferol is involved in the autophagic process. Double-membrane vacuoles, lysosomal compartments, acidic vesicular organelles and cleavage of microtubule-associated protein 1 light chain 3 (LC3) were observed by transmission electron microscopy, LysoΤracker red staining, GFP-fluorescent LC3 assays and acridine orange staining, respectively. In SK-HEP-1 cells, kaempferol increased the protein levels of p-AMPK, LC3-II, Atg 5, Atg 7, Atg 12 and beclin 1 as well as inhibited the protein levels of CDK1, cyclin B, p-AKT and p-mTOR. Taken together, CDK1/cyclin B expression and the AMPK and AKT signaling pathways contributed to kaempferol-induced G2/M cell cycle arrest and autophagic cell death in SK-HEP-1 human hepatic cancer cells. These results suggest that kaempferol may be useful for long-term cancer prevention.
Kaempferol is a natural flavonoid that possesses anti-proliferative and apoptosis-inducing activities in several cancer cell lines. In the present study, we investigated the anti-metastatic activity of kaempferol and its molecular mechanism(s) of action in human osteosarcoma cells. Kaempferol displayed inhibitory effects on the invasion and adhesion of U-2 osteosarcoma (OS) cells in a concentration-dependent manner by Matrigel Transwell assay and cell adhesion assay. Kaempferol also inhibited the migration of U-2 OS cells in a concentration-dependent manner at different treatment time points by wound-healing assay. Additional experiments showed that kaempferol treatment reduced the enzymatic activities and protein levels of matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator (uPA) by gelatin and casein-plasminogen zymography assays and western blot analyses. Kaempferol also downregulated the mRNA levels of MMP-2 and MMP-9 by quantitative PCR analyses. Furthermore, kaempferol was able to reduce the protein phosphorylation of ERK, p38 and JNK by western blotting. By electrophoretic mobility-shift assay (EMSA), we demonstrated that kaempferol decreased the DNA binding activity of AP-1, an action likely to result in the reduced expression of MMP-2, MMP-9 and uPA. Collectively, our data showed that kaempferol attenuated the MAPK signaling pathways including ERK, JNK and p38 and resulted in the decreased DNA binding ability of AP-1, and hence, the downregulation in the expression and enzymatic activities of MMP-2, MMP-9 and uPA, contributing to the inhibition of metastasis of U-2 OS cells. Our results suggest a potential role of kaempferol in the therapy of tumor metastasis of OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.