Background: As novel hypoglycemic drugs, the effects of sodium-dependent glucose transporter 2 inhibitors (SGLT-2I) on inflammatory factors such as C-reactive protein (CRP) remain unclear.Methods: We conducted a meta-analysis of studies on SGLT-2I in the treatment of type 2 diabetes (T2DM) to observe the changes of CRP in patients with T2DM. We searched 4 electronic databases (CNKI, PubMed, EMBASE, and Cochrane Library) for articles published up to December 31, 2021. Studies were analyzed using a random-effects model to obtain standard deviation mean differences (SMDs) and 95% confidence intervals (CIs). Sensitivity and subgroup analyses were performed. Publication bias was evaluated using funnel plots and Egger test.Results: We included data from 927 patients in 13 confirmatory trials that showed a significant decrease in CRP among patients with T2DM treated with SGLT-2I. The decrease was more significant with than without SGLT-2I. In subgroup analysis according to nationality, medication, and comorbidities, CRP reduction was associated with nationality, SGLT-2I type, and the presence of comorbidities. Sensitivity analysis showed that our results were reliable and found no evidence of substantial publication bias.Conclusions: SGLT-2I could reduce CRP levels in patients with T2DM.
Background Congenital adrenal hyperplasia (CAH), characterized by defective adrenal steroidogenesis, is transmitted in an autosomal recessive manner. Mutations in the steroid 21-hydroxylase gene CYP21A2 causing steroid 21-hydroxylase deficiency account for most cases of CAH. The c.145l-1452delGGinsC gene mutation is rare, and only one case has been reported, but the form of gene mutation is different from this case, resulting in different clinical phenotype. The most common pathogenic genotype of CAH is a homozygous or compound heterozygous mutation, but CAH patients homozygous for the p.I173N mutation and heterozygous for the c.1451-1452delGGinsC mutation have not been reported previously. We report herein a familial case of CAH, in which both siblings carry the rare homozygous p.I173N mutation and heterozygous c.1451-1452delGGinsC mutation. Case presentation The proband showed amenorrhea, infertility, polycystic ovaries, and increased levels of androgen, rather than the typical clinical manifestations of CAH such as an adrenal crisis or masculine vulva, so was misdiagnosed with polycystic ovary syndrome for many years. Following a correct diagnosis of CAH, she was given glucocorticoid treatment, her menstruation became more regular, and she became pregnant and delivered a healthy baby girl. Conclusions The genotypes may be p.I173N homozygous or p.I173N/c.1451-1452delGGinsC heterozygous, both mutations could be pathogenic. This complex combination of mutations has not been reported or studied before. Through the report and analysis of this genotype, the content of CAH gene bank is enriched and the misdiagnosis rate of CAH is reduced.
Purpose: To investigate possible mechanisms underlying the greater susceptibility of lipid metabolism disorders in low birth weight (LBW) mice fed with high-fat diets (HFDs). Methods: LBW mice model was established by using the pregnancy malnutrition method. Male pups were selected from LBW and normal-birth weight (NBW) offspring at random. After 3 weeks of weaning, all offspring mice were fed with HFD. Serum triglycerides (TGs), cholesterol (TC), low density lipoprotein (LDL-C), total bile acid (TAB), non-esterified fatty acid (NEFA), and mice fecal bile acid profiles were measured. Lipid deposition in liver sections was visualized by Oil Red O staining. The weight ratio of liver, muscle, and adiposity was calculated. Tandem mass tag (TMT) combined with LC-MS/MS was used to determine the differentially expressed proteins (DEPs) of liver tissue in two groups. Bioinformatics was used for further analysis of DEPs to screen key target proteins, and then Western Blot (WB) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to validate the expressions of DEPs. Results: LBW mice fed with HFD showed more severe lipid metabolism disorders in the childhood. In contrast to the NBW group, the serum bile acids and fecal ω-muricholic acid (ω-MCA) levels in the LBW group were significantly lower. LC-MS/MS analysis showed that downregulated proteins were associated with lipid metabolism, and further analysis found that these proteins are mainly concentrated in peroxisome proliferation-activated receptor (PPAR) and primary bile acid synthesis signaling pathways and are involved in cellular processes and metabolic processes through binding and catalytic functions. Bioinformatics analysis indicated that the level of Cytochrome P450 Family 46 Subfamily A Member 1 (CYP46A1), PPARα, key factors of cholesterol metabolism and bile acid synthesis, as well as downstream molecules Cytochrome P450 Family 4 Subfamily A Member 14 (CYP4A14), and Acyl-Coenzyme A Oxidase 2 (ACOX2) are markedly different in the liver of LBW individuals fed with HFD, and confirmed by WB and RT-qPCR. Conclusion: LBW mice are more prone to dyslipidemia probably due to downregulated bile acid metabolism-related PPARα/CYP4A14 pathway, resulting in insufficient metabolism of cholesterol to bile acids, which, in turn, leads to elevated blood cholesterol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.