Contractile stimulation has been shown to initiate actin polymerization in smooth muscle tissues, and this actin polymerization is required for active tension development. We evaluated whether neuronal Wiskott-Aldrich syndrome protein (N-WASp)-mediated activation of the actin-related proteins 2 and 3 (Arp2/3) complex regulates actin polymerization and tension development initiated by muscarinic stimulation in canine tracheal smooth muscle tissues. In vitro, the COOH-terminal CA domain of N-WASp acts as an inhibitor of N-WASp-mediated actin polymerization; whereas the COOH-terminal VCA domain of N-WASp is constitutively active and is sufficient by itself to catalyze actin polymerization. Plasmids encoding EGFP-tagged wild-type N-WASp, the N-WASp VCA and CA domains, or enhanced green fluorescent protein (EGFP) were introduced into tracheal smooth muscle strips by reversible permeabilization, and the tissues were incubated for 2 days to allow for expression of the proteins. Expression of the CA domain inhibited actin polymerization and tension development in response to ACh, whereas expression of the wild-type N-WASp, the VCA domain, or EGFP did not. The increase in myosin light-chain (MLC) phosphorylation in response to contractile stimulation was not affected by expression of either the CA or VCA domain of N-WASp. Stimulation of the tissues with ACh increased the association of the Arp2/3 complex with N-WASp, and this association was inhibited by expression of the CA domain. The results demonstrate that 1) N-WASp-mediated activation of the Arp2/3 complex is necessary for actin polymerization and tension development in response to muscarinic stimulation in tracheal smooth muscle and 2) these effects are independent of the regulation of MLC phosphorylation.
Background: RhoA GTPase regulates airway smooth muscle (SM) contraction and actin polymerization by an unknown mechanism. Results: Agonist stimulation induces the RhoA-dependent recruitment of paxillin, vinculin, FAK, and cdc42 GEFs to adhesomes, which catalyze cdc42 and N-WASP activation. Conclusion: RhoA regulates actin polymerization and SM contraction by regulating the adhesome assembly. Significance: Rho-mediated adhesome assembly is a novel mechanism for the regulation of agonist-induced SM contraction.
Background—
Scavenger receptor class B type I (SR-BI) is expressed in macrophages, where it has been proposed to facilitate cholesterol efflux. However, direct evidence that the expression of macrophage SR-BI is protective against atherosclerosis is lacking. In this study, we examined the in vivo role of macrophage SR-BI in atherosclerotic lesion development in the apolipoprotein (apo) E–deficient mouse model.
Methods and Results—
ApoE-deficient mice with (n=16) or without (n=15) expression of macrophage SR-BI were created by transplanting lethally irradiated apoE-deficient mice with bone marrow cells collected from SR-BI
−/−
apoE
−/−
mice or SR-BI
+/+
apoE
−/−
mice. The recipient mice were fed a chow diet for 12 weeks after transplantation for analysis of atherosclerosis. Quantification of macrophage SR-BI mRNA by real-time reverse transcription–polymerase chain reaction indicated successful engraftment of donor bone marrow and inactivation of macrophage SR-BI in recipient mice reconstituted with SR-BI
−/−
apoE
−/−
bone marrow. There were no significant differences in plasma lipid levels, lipoprotein distributions, and HDL subpopulations between the 2 groups. Analysis of the proximal aorta demonstrated an 86% increase in mean atherosclerotic lesion area in SR-BI
−/−
apoE
−/−
→ apoE
−/−
mice compared with SR-BI
+/+
apoE
−/−
→ apoE
−/−
mice (109.50±18.08 versus 58.75±9.58×10
3
μm
2
; mean±SEM,
P
=0.017). No difference in cholesterol efflux from SR-BI
+/+
apoE
−/−
or SR-BI
−/−
apoE
−/−
macrophages to HDL or apoA-I discs was detected.
Conclusions—
Expression of macrophage SR-BI protects mice against atherosclerotic lesion development in apoE-deficient mice in vivo without influencing plasma lipids, HDL subpopulations, or cholesterol efflux. Thus, macrophage SR-BI plays an antiatherogenic role in vivo, providing a new therapeutic target for the design of strategies to prevent and treat atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.