Background and aims Overwintering is a critical part of the annual cycle of animals living at high latitudes, and selection of overwintering sites (hibernacula) is important to population persistence. Identifying the overwintering sites of aquatic species is challenging in areas where water bodies are frozen for significant parts of the year. We tested whether environmental DNA (eDNA) approaches could help to locate them. Materials and methods We conducted environmental DNA surveys of underwater overwintering sites of the northern map turtle (Graptemys geographica), a species of conservation concern in Canada. We collected water samples under the ice in winter across a mid‐sized temperate lake and used quantitative PCR with a species‐specific probe to quantify concentrations of map turtle eDNA. Results and discussion We found localized eDNA signals consistent with known overwintering sites and one previously suspected site. The latter was further confirmed using underwater remote operated vehicle (ROV) visual surveys. Conclusions Our study confirms that eDNA can offer insights on a critical part of the annual cycle of aquatic species, for which we know very little.
Background To determine species distributions and the factors underlying them, reliable occurrence data are crucial. Assembling such data can be challenging for species with cryptic life histories or that occur at low densities. Methods We developed species-specific eDNA protocols, from sampling through data interpretation, to detect the common musk turtle (Sternotherus odoratus) and tested whether eDNA occurrences change our understanding of the species distribution and the factors that shape its northern range limit. We used Species Distribution Models (SDMs) with full parameter optimization on citizen science observations of S. odoratus in Southern Ontario alone and together with eDNA occurrences. Results Our eDNA protocol was robust and sensitive. SDMs built from traditional observations and those supplemented with eDNA detections were comparable in prediction accuracy. However, models with eDNA detections suggested that the distribution of S. odoratus in Southern Ontario is underestimated, especially near its northern range limit, and that it is shaped by thermal conditions, hydrology, and elevation. Our study underscores the promise of eDNA for surveying cryptic aquatic organisms in undocumented areas, and how such insights can help us to improve our understanding of species distributions.
Understanding how animals respond to large-scale environmental changes is difficult to achieve because monitoring data are rarely available for more than the past few decades, if at all. Here, we demonstrate how a variety of palaeoecological proxies (e.g. isotopes, geochemistry and DNA) from an Andean Condor ( Vultur gryphus ) guano deposit from Argentina can be used to explore breeding site fidelity and the impacts of environmental changes on avian behaviour. We found that condors used the nesting site since at least approximately 2200 years ago, with an approximately 1000-year nesting frequency slowdown from ca 1650 to 650 years before the present (yr BP). We provide evidence that the nesting slowdown coincided with a period of increased volcanic activity in the nearby Southern Volcanic Zone, which resulted in decreased availability of carrion and deterred scavenging birds. After returning to the nest site ca 650 yr BP, condor diet shifted from the carrion of native species and beached marine animals to the carrion of livestock (e.g. sheep and cattle) and exotic herbivores (e.g. red deer and European hare) introduced by European settlers. Currently, Andean Condors have elevated lead concentrations in their guano compared to the past, which is associated with human persecution linked to the shift in diet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.