Midlatitude Asia (MLA), strongly influenced by westerlies-controlled climate, is a key source of global atmospheric dust, and plays a significant role in Earth’s climate system . However, it remains unclear how the westerlies, MLA aridity, and dust flux from this region evolved over time. Here, we report a unique high-resolution eolian dust record covering the past 3.6 Ma, retrieved from the thickest loess borehole sequence (671 m) recovered to date, at the southern margin of the Taklimakan desert in the MLA interior. The results show that eolian dust accumulation, which is closely related to aridity and the westerlies, indicates existence of a dry climate, desert area, and stable land surface, promoting continuous loess deposition since at least ∼3.6 Ma. This region experienced long-term stepwise drying at ∼2.7, 1.1, and 0.5 Ma, coeval with a dominant periodicity shift from 41-ka cyclicity to 100-ka cyclicity between 1.1 Ma and 0.5 Ma. These features match well with global ice volume variability both in the time and frequency domains (including the Mid-Pleistocene Transition), highlighting global cooling-forced aridity and westerlies climate changes on these timescales. Numerical modeling demonstrates that global cooling can dry MLA and intensify the westerlies, which facilitates dust emission and transport, providing an interpretive framework. Increased dust may have promoted positive feedbacks (e.g., decreasing atmospheric CO2 concentrations and modulating radiation budgets), contributing to further cooling. Unraveling the long-term evolution of MLA aridity and westerlies climate is an indispensable component of the unfolding mystery of global climate change.
The uplift of the Tibetan Plateau (TP) during the late Cenozoic is thought to be one of crucial factors controlling Asian climate. However, the complex interaction between tectonics and climate change is still unclear. Here we present the first record of clay mineralogy and elemental geochemistry covering 12.7-4.8 Ma in a fluvial-lacustrine sequence in the Xining Basin. Geochemical provenance proxies (Th/Sc, Zr/Sc, and Cr/Zr) in the <2-μm fraction show a significant provenance change at~8.8 Ma. Silicate-based weathering indexes (CIA, CIW, and PIA) displayed coeval changes with provenance but discrepant changes with regional climate. Since the clay mineralogy exhibits significant change at~7.8 Ma uncorrelated with modifications in provenance, it can be employed to reveal regional climate change. The rise in illite and associated decrease in the sum of smectite and illite/smectite mixed layers reflect gradual and slow aridification since~12.7 Ma with intensified drying since~7.8 Ma until approaching the modern climate status. Our results, together with other regional climatic and tectonic records, clearly illustrate that accelerated uplift of the northeastern TP since~8-9 Ma has mainly modulated the regional erosion, weathering, transportation, and sedimentation and amplified the global cooling and drying trend toward the regional climate of modern conditions. Our study suggests that in the tectonically active northeastern TP, a comprehensive mineralogical and geochemical investigation of the fine-grained fraction of the basin sediments could retrieve the interactions between tectonics and climate behind the complex change in exhumed lithology and sedimentary routing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.