Smart sensor network has the characteristics of low cost, low power consumption, real time, strong adaptability, etc., and it has a wide range of application prospects in the agricultural field. However, the smart sensor node is limited by its own energy; it also faces many bottlenecks in agricultural applications. Therefore, balancing the energy consumption of nodes and extending the life of the network are important considerations in the design of efficient routing for smart sensor networks. Aiming at the problem of energy constraints, this paper proposes an intelligent sensor network clustering algorithm based on adaptive chaotic ant colony optimization (ACACO). ACACO introduces logical chaotic mapping to interfere with the pheromone on the initial path and uses the adaptive strategy to improve the transition probability formula. After selecting the best next hop node, the advancing ants are released to update the local pheromone, and the current pheromone content is adjusted by the chaos factor. When the ants determine the path, they release subsequent ants to update the global pheromone. The simulation results show that ACACO has obvious advantages over genetic algorithm (GA) and particle swarm optimization (PSO).
With the rapid development of Internet technology, network attacks have become more frequent and complex, and intrusion detection has also played an increasingly important role in network security. Intrusion detection is real-time and proactive, and it is an indispensable technology under the diversified trend of network security issues. In terms of network security, neural networks have the characteristics of self-learning, self-adaptation, and parallel computing, which are very important in intrusion detection. This paper combines back propagation neural network (BPNN) and elite clone artificial bee colony (ECABC) to propose a new ECABC-BPNN, which updates and optimizes the settings of traditional BPNN weights and thresholds. Then, apply ECABC-BPNN to network intrusion detection. Use the attack data samples of KDD CUP 99 and water pipe for attack classification experiments using GA-BPNN, PSO-BPNN, and ECABC-BPNN. The results show that the ECABC-BPNN proposed in this paper has an accuracy rate of 98.08% on KDD 99 and 99.76% on water pipe data. ECABC-BPNN effectively improves the accuracy of network intrusion classification and reduces classification errors. In addition, the time complexity of using ECABC-BPNN to classify network attacks is relatively low. Therefore, ECABC-BPNN has superior performance in network intrusion detection and classification.
Large-scale wireless sensor networks (LSWSNs) are currently one of the most influential technologies and have been widely used in industry, medical, and environmental monitoring fields. The LSWSNs are composed of many tiny sensor nodes. These nodes are arbitrarily distributed in a certain area for data collection, and they have limited energy consumption, storage capabilities, and communication capabilities. Due to limited sensor resources, traditional network protocols cannot be directly applied to LSWSNs. Therefore, the issue of maximizing the LSWSNs’ lifetime by working with duty cycle design algorithm has been extensively studied in this paper. Encouraged by annealing algorithm, this work provides a new elite adaptive simulated annealing (EASA) algorithm to prolong LSWSNs’ lifetime. We then present a sensor duty cycle models, which can make sure the full coverage of the monitoring targets and prolong the network lifetime as much as possible. Simulation results indicate that the network lifetime of EASA algorithm is 21.95% longer than that of genetic algorithm (GA) and 28.33% longer than that of particle swarm algorithm (PSO).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.