Background Studies have indicated vascular smooth muscle cells (VSMCs) played a crucial role in atherosclerosis and microRNAs (miRNAs) played key roles in biological functions of VSMCs. Whereas, the potential function and mechanism of miR-552 in VSMCs remains unclear. Our aim was to explore the role of miR-552 on VSMCs and underlying mechanism. Material/Methods MTT assay and transwell assay were used to measure the proliferation, invasion, and migration of human brain VSMCs (HBVSMCs) and mice VSMCs (mVSMCs), respectively. Bioinformatics tools and luciferase assay were adopted to verify the association between miR-552 and SKI. Rescue experiments were employed to assess the interaction of miR-552 and SKI in modulating biological functions in HBVSMCs and mVSMCs. The expression level of transcription factors (TFs)was measured via qRT-PCR assay. The effect of ATF4 on miR-552 and SKI expression was tested by qRT-PCR or western blot assay. Finally, chromatin immunoprecipitation (ChIP) assay and JASPAR databases were used to analyze the regulatory linkage between ATF4 and miR-552. Results We found that miR-552 was upregulated in HBVSMCs treated with PDGF-bb and miR-552 overexpression could promote proliferation, invasion, and migration of HBVSMCs and mVSMCs, whereas, miR-552 knockdown had the opposite impact. In addition, we also found that SKI was a direct target of miR-552, which reversed miR-552-mediated proliferation, invasion, and migration in HBVSMCs and mVSMCs. Furthermore, we also discovered that miR-552 overexpression promoted the effects of ATF4 elevation on proliferation, migration and invasion of HBVSMCs and mVSMCs, but, miR-552 decline had the opposite impact. Conclusions ATF4-miR-552-SKI axis played critical roles in the proliferation and migration of HBVSMCs and mVSMCs, which were closely involved in atherosclerosis (AS). Therefore, our findings might offer a novel therapeutic target for AS.
Purpose The objective of this paper is to explore the role of circHECTD1 in vascular smooth muscle cells (VSMCs) and atherosclerosis (AS). Methods VSMCs were treated with platelet-derived growth factor-BB (PDGF-BB) in vitro, and the level of circHECTD1 was determined using qRT-PCR. Cell proliferation, migration, and invasion were analyzed using CCK8 and transwell assays. Cell apoptosis and cell cycle were analyzed using flow cytometry. The binding interaction between circHECTD1 and KHDRBS3 or EZH2 was investigated using the RIP, RNA pull-down. Results CircHECTD1 was upregulated in PDGF-BB-induced VSMCs with a dose-dependent and time-dependent manner. Knockdown of circHECTD1 suppressed VSMCsproliferation and migration and enhanced cell apoptosis in VSMCs, while circHECTD1 overexpression yielded opposite effects. Mechanistically, circHECTD1 could interact with KHDRBS3, thus enhanced the stability of EZH2 mRNA and increased EZH2 protein level. In addition, silencing EZH2 in VSMCs reversed the proliferation-enhancing effect of circHECTD1 overexpression. Conclusion Our findings provided providing a potential prognostic and therapy biomarker for AS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.