Early detection of defects inside a rail is of great significance to ensure the safety of rail transit. This work investigated the ability of ultrasonic guided waves (UGWs) to detect internal defects in a rail head. First, the model of UGW propagation in rail, which has an irregular cross-section, was constructed based on the semi-analytical finite element (SAFE) method. Fundamental characteristics, such as wavenumber, phase or group velocity, and wave structure inside the rail, were then calculated. Following modal and vibration energy distribution analysis, a guided wave mode that is sensitive to transverse fissure (TF) defects was selected, and its excitation method was proposed. The effectiveness of the excitation method was confirmed by simulations performed in the ABAQUS software. According to the simulation data, the dispersion curve calculated by using the two-dimensional Fourier fast transform (2D-FFT) coincided well with that of the SAFE method. After that, the sensitivity of the selected mode to internal rail defects was validated and its ability to locate defects was also demonstrated. Finally, the effects of excitation frequency, defect size, and vertical and horizontal defect depth on the reflection waveforms were investigated.
Ultrasonic transducers performance can be seriously deteriorated by loss of adhesion between some constitutive elements such as the active element, the backing, or the matching layer. In the present work, the influence of bonding delaminations on the performance of a single-element ultrasonic transducer, which is composed of a piezoelectric disk, a backing, and a matching layer, is studied numerically and experimentally. Based on the positions between layers, two cases, i.e., delaminations between ceramic and backing or between ceramic and matching layer, are considered. Each case involves three different types of delaminations, which are marked as delamination type (DT)-I, II, and III. DT-I, a circular shape delamination, starts from the center and expands towards the peripheric zone; DT-II, an annular shape delamination, starts from the peripheric zone and expands towards the center; DT-III is a sector shape delamination with a given angle. The numerical simulations are performed by the finite element method and the influence of delaminations on the electromechanical admittance (EMA) of the transducer is investigated. 3D printed backings and matching layers are mounted on a PZT sample to assemble delaminated single-element transducers. An impedance analyzer is used for experimental measurements. Comparison between numerical and experimental results shows a reasonable agreement making changes in EMA an interesting indicator to inform about the occurrence and severity of delaminations in a single-element ultrasonic transducer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.