Background LINC00426 is a newly identified long non-coding RNA (lncRNA) with unacknowledged biological roles. Here we set out to characterize the expression status of LINC00426 in osteosarcoma and understand its mechanistic involvement in incidence of doxorubicin (Dox) resistance. Methods The relative expression of LINC00426 and miR-4319 was determined by real-time PCR. Cell viability and proliferation in response to LINC00426 silencing or miR-4319 over-expression was measured with CCK-8 kit and colony formation assay, respectively. The direct association between LINC00426 and miR-4319 was analyzed by pulldown assay with biotin-labelled probes. Results LINC00426 was significantly up-regulated in Dox-resistant osteosarcoma (OS) both in vitro and in vivo, which intimately associated with unfavorable prognosis. SiRNA-mediated knockdown of LINC00426 remarkably compromised cell viability and proliferation in Dox-resistant OS cells, which accompanied with decrease of IC50 and activation of caspase-3. We further predicted and validated the regulatory effects of miR-4319 on LINC00426 expression. Simultaneously, we provided evidences in support of direct binding between LINC00426 and miR-4319 by pulldown assay. Reciprocally negative regulation was observed between LINC00426 and miR-4319 each other. Conclusion Ectopic introduction of miR-4319 significantly surmounted the Dox resistance in OS cells, while miR-4319 inhibition in LINC00426-deficient cells greatly restore this phenotype. We uncovered the important contribution of LINC00426/miR-4319 to Dox resistance in osteosarcoma. Reviewers This article was reviewed by Bo Liang and Sinan Zhu.
Background: The aim of this study was to compare the distribution characteristics and ocular pharmacokinetics of norvancomycin (NVCM) in ocular tissues of the anterior segment between continuous topical ocular instillation and hourly administration of eye drop in rabbits. Methods: Sixty rabbits were randomly divided into two groups: continuous topical ocular instillation drug delivery (CTOIDD) group and eye drop (control) group. In the CTOIDD group, NVCM solution (50 mg/mL) was perfused to the ocular surface using the CTOIDD system at 2 mL/ h up to 10 h and the same solution was administered at one drop (50 μL) per hour for 10 h in the control group. Animals (N=6 per time-point per group) were humanely killed at 2, 4, 6, 10, and 24 h to analyze their ocular tissues and plasma. The concentrations of NVCM in the conjunctiva, cornea, aqueous humour, iris, ciliary body and plasma were measured by HPLC with photodiode array detector. The pharmacokinetic parameters were calculated by Kinetica 5.1. Results: The highest concentrations of NVCM for the CTOIDD group and control group were 2105.45±919.89 μg/g and 97.18±43.14 μg/g in cornea, 3033.92±1061.95 μg/g and 806.99 ±563.02 μg/g in conjunctiva, 1570.19±402.87 μg/g and 46.93±23.46 μg/g in iris, 181.94 ±47.11 μg/g and 15.38±4.00 μg/g in ciliary body, 29.78±4.90 μg/mL and 3.20±1.48 μg/mL in aqueous humour, and 26.89±5.57 μg/mL and 1.90±1.87 μg/mL in plasma, respectively. The mean NVCM levels significantly increased at all time-points in cornea, iris, and ciliary body (p<0.05) in the CTOIDD group. The AUC 0-24 values in the CTOIDD group were 27,543.70 μg•h/g in cornea, 32,514.48 μg•h/g in conjunctiva, 8631.05 μg•h/g in iris, 2194.36 μg•h/g in ciliary body and 343.9 μg•h/mL in aqueous humour, which were higher than for the eye drop group in all tissues. Conclusion: Since continuous instillation of NVCM with CTOIDD could reach significantly higher concentrations and was sustained for a longer period compared with hourly administration of eye drop, CTOIDD administered NVCM could be a possible method to treat bacterial keratitis.
Purpose To explore the feasibility of cyclophosphamide (CP) via a sub-Tenon micro-perfusion system (SMS) in rabbits, and assess its therapeutic efficacy in severe ocular inflammation. Materials and Methods Distribution and pharmacokinetics of CP were evaluated in vivo, and the concentrations of CP in plasma, vitreous humor, and retina/choroid were quantitated by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) at different time points. After induction of severe experimental uveitis, rabbits were divided into three groups (n=8 in each): the SMS group, subconjunctival injection (SI) group, and control group. Clinical inflammatory score was assessed in rabbits. Electroretinography and histopathology were performed on post-treatment day 8. Statistical analyses were performed using Mann–Whitney and Kruskal–Wallis tests. P -value less than 0.05 was considered significant. Results The concentrations of CP in vitreous humor and retina/choroid in the SMS group were significantly higher than that of the SI group at 3, 6, 10, and 24 hours ( P <0.01), while plasmatic CP concentrations were comparable at all time points in the SMS group and SI group ( P >0.05). The SMS group showed significantly less inflammation compared to the control group and SI group. Furthermore, the restoration of retinal structure and function were more obvious in the SMS group compared with conventional SI application. Conclusion Sub-Tenon micro-perfusion of CP exhibited satisfied therapeutic efficacy in rabbits with severe ocular inflammation and may provide a promising alternative for controlling ocular inflammatory disease and immune-mediated ocular diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.