With the continuous development of deep learning in multi-target tracking, the use of convolutional neural network for feature extraction has replaced the traditional feature extraction method, but the accuracy of target tracking needs to be improved. In order to further improve the accuracy of multi-target tracking, a new multi-target tracking algorithm based on RFB is proposed in this paper. The algorithm is mainly divided into three parts: multi-target detection, feature extraction and multi-target tracking. In the multi-target detection part, CenterNet was selected as the detection network to improve detection accuracy. In feature extraction part, RFBNET is combined with pedestrian re-recognition network to strengthen feature extraction capability. DeepSORT algorithm is used in multi - target tracking. Experimental results on MOT16 data set show that the proposed algorithm is more effective than other methods.
The SiamFC target tracking algorithm has attracted extensive attention because of its good balance between speed and performance, but the tracking effect of the SiamFC algorithm is not satisfactory in complex background scenes. When SiamFC algorithm uses deep semantic features for tracking, it has good recognition ability for different types of objects, but it has insufficient discrimination for the same types of objects. Therefore, we propose an effective anti-interference module to improve the discrimination ability of the algorithm. The anti-interference module uses another feature extraction network to extract the features of the candidate target images generated by the SiamFC main network. In addition, we set up the feature vector set to save the feature vectors of the tracking target and the template image. Finally, the tracking target is selected by calculating the minimum cosine distance between the feature vector of the candidate target and the vector in the feature vector set. A large number of experiments show that our anti-interference module can effectively improve the performance of SiamFC algorithm, and the performance of this algorithm can be comparable to the popular algorithms.
With the advancement of Internet of Things (IoT) and artificial intelligence technologies, and the need for rapid application growth in fields, such as security entrance control and financial business trade, facial information processing has become an important means for achieving identity authentication and information security. However, in the process of acquiring facial feature information, face information is easily affected by factors, such as object occlusion, lighting changes, and similar backgrounds. In this paper, we propose a multifeature fusion algorithm based on integral histograms and a real‐time update tracking particle filtering (PF) module. First, edge features and colour features are extracted, weighting methods are used to weight the colour histogram and edge features to describe facial features, and fusion of colour features and edge features is made adaptive by using fusion coefficients to improve face tracking reliability. Then, the integral histogram is integrated into the PF algorithm to simplify the calculation steps of complex particles and improve operational efficiency. Finally, the tracking window size is adjusted in real‐time according to the change in the average distance from the particle centre to the edge of the current model and the initial model to reduce the drift problem and achieve stable tracking with significant changes in the target dimension. The results show that the algorithm improves video tracking accuracy, simplifies particle operation complexity, improves the speed, and has good anti‐interference ability and robustness compared with extracting a single feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.