Summary
Recent innovations in single-cell chromatin accessibility sequencing (scCAS) have revolutionized the characterization of epigenomic heterogeneity. Estimation of the number of cell types is a crucial step for downstream analyses and biological implications. However, efforts to perform estimation specifically for scCAS data are limited. Here we propose ASTER, an ensemble learning-based tool for accurately estimating the number of cell types in scCAS data. ASTER outperformed baseline methods in systematic evaluation on 27 datasets of various protocols, sizes, numbers of cell types, degrees of cell-type imbalance, cell states, and qualities, providing valuable guidance for scCAS data analysis.
Availability and implementation
ASTER along with detailed documentation is freely accessible at https://aster.readthedocs.io/ under the MIT License. It can be seamlessly integrated into existing scCAS analysis workflows. The source code is available at https://github.com/biox-nku/aster.
Supplementary information
Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.