Wearables have garnered significant attention in recent years not only as consumer electronics for entertainment, communications, and commerce but also for real-time continuous health monitoring. This has been spurred by advances in flexible sensors, transistors, energy storage, and harvesting devices to replace the traditional, bulky, and rigid electronic devices. However, engineering smart wearables that can seamlessly integrate with the human body is a daunting task. Some of the key material attributes that are challenging to meet are skin conformability, breathability, and biocompatibility while providing tunability of its mechanical, electrical, and chemical properties. Electrospinning has emerged as a versatile platform that can potentially address these challenges by fabricating nanofibers with tunable properties from a polymer base. In this article, we review advances in wearable electronic devices and systems that are developed using electrospinning. We cover various applications in multiple fields including healthcare, biomedicine, and energy. We review the ability to tune the electrical, physiochemical, and mechanical properties of the nanofibers underlying these applications and illustrate strategies that enable integration of these nanofibers with human skin.
Devices that can morph their functions on demand provide a rich yet unexplored paradigm for the next generation of electronic devices and sensors. For example, an antenna that can morph its shape can be used to adapt communication to different wireless standards or improve wireless signal reception. We utilize temperature-sensitive shape memory alloys (SMA) to realize a shape morphing antenna (ShMoA). In the designed architecture, multiple conjoined shape memory alloy sections form the antenna. The shape morphing of this antenna is achieved through temperature control. Different temperature threshold levels are used for programming the shape. Besides its conventional use for RF applications, ShMoA can serve as a multi-level temperature sensor, analogous to thermoreceptors in an insect antenna. ShMoA essentially combines the function of temperature sensing, embedded computing for detection of threshold crossings, and radio frequency readout, all in the single construct of a shape-morphing antenna (ShMoA) without the need for any battery or peripheral electronics. The ShMoA can be employed as bio-inspired wireless temperature sensing antennae on mobile robotic flies, insects, drones and other robots. It can also be deployed as programmable antennas for multi-standard wireless communication.
Economical sensing and recording of temperatures are important for monitoring the supply chain. Existing approaches measure the entire temperature profile over time using electronic devices running on a battery. This paper presents a simple, intelligent, battery-free solution for capturing key temperature events using the natural thermo-mechanical state of a Shape Memory Alloy (SMA). This approach utilizes the temperature-induced irreversible mechanical deformation of the SMA as a natural way to capture the temperature history without the need for electronic data logging. In this article, two-way SMA is used to record both high-temperature and low-temperature peak events. Precise thermo-mechanically trained SMA are employed as arms of the dipole antenna for Radio Frequency (RF) readout. The fabricated antenna sensor works at 1 GHz and achieves a sensitivity of 0.24 dB/°C and −0.16 dB/°C for recording temperature maxima and minima, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.