Sustainable agriculture is an important global issue. The use of organic fertilizers can enhance crop yield and soil properties while restraining pests and diseases. The objective of this study was to assess the effects of long-term use of chemical and organic fertilizers on tea and rhizosphere soil properties in tea orchards. Inductively coupled plasma mass spectrometry (ICP-MS) and high-throughput sequencing technology analyses were used to investigate heavy metals content and bacterial composition in rhizosphere soils. Our results indicated that organic fertilizer treatment significantly decreased Cu, Pb and Cd contents in rhizosphere soil sample. The results also showed that treatment with organic fertilizer significantly decreased the contents of Cd, Pb and As in tea leaves. Furthermore, organic fertilizer significantly increased the amino acids content of tea and the pH of the soil. The use of organic fertilizer significantly increased in the relative abundance of Burkholderiales , Myxococcales , Streptomycetales , Nitrospirales , Ktedonobacterales , Acidobacteriales , Gemmatimonadales , and Solibacterales , and decreased the abundance of Pseudonocardiales , Frankiales , Rhizobiales , and Xanthomonadales . In conclusion, organic fertilizer can help to shape the microbial composition and recruit beneficial bacteria into the rhizosphere of tea, leading to improved tea quality and reduced heavy metals content in rhizosphere soil and tea leaves.
Under consecutive monoculture, the biomass and quality of Rehmannia glutinosa declines significantly. Consecutive monoculture of R. glutinosa in a four-year field trial led to significant growth inhibition. Most phenolic acids in root exudates had cumulative effects over time under sterile conditions, but these effects were not observed in the rhizosphere under monoculture conditions. It suggested soil microbes might be involved in the degradation and conversion of phenolic acids from the monocultured plants. T-RFLP and qPCR analysis demonstrated differences in both soil bacterial and fungal communities during monoculture. Prolonged monoculture significantly increased levels of Fusarium oxysporum, but decreased levels of Pseudomonas spp. Abundance of beneficial Pseudomonas spp. with antagonistic activity against F. oxysporum was lower in extended monoculture soils. Phenolic acid mixture at a ratio similar to that found in the rhizosphere could promote mycelial growth, sporulation, and toxin (3-Acetyldeoxynivalenol, 15-O-Acetyl-4-deoxynivalenol) production of pathogenic F. oxysporum while inhibiting growth of the beneficial Pseudomonas sp. W12. This study demonstrates that extended monoculture can alter the microbial community of the rhizosphere, leading to relatively fewer beneficial microorganisms and relatively more pathogenic and toxin-producing microorganisms, which is mediated by the root exudates.
Zn, Se, and Fe levels in 65 Chinese rice samples were investigated, and the results indicated that these micronutrients contents of rice products from different location varied considerably. The mean contents of Zn, Se and Fe in these rice samples were 21.5+/-1.8, 0.020+/-0.012, and 12.4+/-4.3 mg kg(-1), respectively, which were too low to meet the micronutrient demands for the population feeding on the rice as staple. A field orthogonal experiment L9 (3(4)) was conducted on rice cultivar Wuyunjing 7, to evaluate the effect of Zn, Se, and Fe foliar fertilization on the concentration of these micronutrients, yield, and protein and ash content of rice grain. The results indicated that Zn and Se were the main variables influencing the Zn, Se, and Fe content of rice, and the optimal combination of fertilization for enhancing these micronutrients was 0.90 kg ha(-1) Zn, 0.015 kg ha(-1) Se, and 0.90 kg ha(-1) Fe. Under the optimal application condition, Zn, Se, and Fe content of rice could be significantly increased by 36.7%, 194.1%, and 37.1%, respectively, compared with the control, without affecting grain yield and protein and ash content of rice products. Moreover, in the confirmation experiment on rice cultivar Ninggeng 1, the optimal fertilization could increase the Zn, Se, and Fe content of rice up to 17.4, 0.123, and 14.2 mg kg(-1), respectively.
Although many studies describe ionic liquids (ILs) as potentially greener solvents, few studies address their relationship with the environment. Recent researches suggest that some ILs have toxicity. 1-Butyl-3-methylimidazolium tetrafluoroborate ([C4mim][BF4]) was reported to have the lowest toxicity among ILs. In this work, we studied the toxicity of this IL on wheat seedlings. It was shown that wheat germination was reduced to 38.0% in the presence of 4.4 mmol/L [C4mim][BF4] compared with 100% germination for the control. Similarly, the root and shoot length of wheat seedlings decreased with increasing concentrations of [C4mim][BF4]. The activity of amylase increased in shoots and roots, but it decreased significantly in germinating seeds when the [C4mim][BF4] concentration exceeded 1.8 mmol/L. Peroxidase (POD) activity and soluble protein content in shoots treated with [C4mim][BF4] changed similarly, but chlorophyll content tended to decrease with increasing concentration of [C4mim][BF4], except for at 1.8 mmol/L. Thus, [C4mim][BF4] at the concentration of 0.9 mmol/L or more was toxic to wheat seedlings. Some remedial measures are suggested to deal with IL pollution in the environment.
BackgroundThe consecutive monoculture for most of medicinal plants, such as Rehmannia glutinosa, results in a significant reduction in the yield and quality. There is an urgent need to study for the sustainable development of Chinese herbaceous medicine.Methodology/Principal FindingsComparative metaproteomics of rhizosphere soil was developed and used to analyze the underlying mechanism of the consecutive monoculture problems of R. glutinosa. The 2D-gel patterns of protein spots for the soil samples showed a strong matrix dependency. Among the spots, 103 spots with high resolution and repeatability were randomly selected and successfully identified by MALDI TOF-TOF MS for a rhizosphere soil metaproteomic profile analysis. These proteins originating from plants and microorganisms play important roles in nutrient cycles and energy flow in rhizospheric soil ecosystem. They function in protein, nucleotide and secondary metabolisms, signal transduction and resistance. Comparative metaproteomics analysis revealed 33 differentially expressed protein spots in rhizosphere soil in response to increasing years of monoculture. Among them, plant proteins related to carbon and nitrogen metabolism and stress response, were mostly up-regulated except a down-regulated protein (glutathione S-transferase) involving detoxification. The phenylalanine ammonia-lyase was believed to participate in the phenylpropanoid metabolism as shown with a considerable increase in total phenolic acid content with increasing years of monoculture. Microbial proteins related to protein metabolism and cell wall biosynthesis, were up-regulated except a down-regulated protein (geranylgeranyl pyrophosphate synthase) functioning in diterpenoid synthesis. The results suggest that the consecutive monoculture of R. glutinosa changes the soil microbial ecology due to the exudates accumulation, as a result, the nutrient cycles are affected, leading to the retardation of plant growth and development.Conclusions/SignificanceOur results demonstrated the interactions among plant, soil and microflora in the proteomic level are crucial for the productivity and quality of R. glutinosa in consecutive monoculture system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.