Noninvasive and real‐time cuffless blood pressure (BP) measurement realizes the idea of unobtrusive and continuous BP monitoring which is essential for diagnosis and prevention of cardiovascular diseases associated with hypertension. In this paper, a wearable sensor patch system that integrates flexible piezoresistive sensor (FPS) and epidermal electrocardiogram (ECG) sensors for cuffless BP measurement is presented. By developing parametric models on the FPS sensing mechanism and optimizing operational conditions, a highly stable epidermal pulse monitoring method is established and beat‐to‐beat BP measurement from the ECG and epidermal pulse signals is demonstrated. In particular, this study highlights the compromise between sensor sensitivity and signal stability. As compared with the current optical‐based cuffless BP measurement devices, the sensing patch requires much lower power consumption (3 nW) and is capable of detecting subtle physiological signal variations, e.g., pre and postexercises, thus providing a promising solution for low‐power, real‐time, and home‐based BP monitoring.
Pulse transit time (PTT) has attracted much interest for cuffless blood pressure (BP) measurement. However, its limited accuracy is one of the main problems preventing its widespread acceptance. Arterial BP oscillates mainly at high frequency (HF) because of respiratory activity, and at low frequency (LF) because of vasomotor tone. Prior studies suggested that PTT can track BP variation in HF range, but was inadequate to follow the LF variation, which is probably the main reason for its unsatisfactory accuracy. This paper presents a new indicator, the photoplethysmogram intensity ratio (PIR), which can be affected by changes in the arterial diameter, and, thus, trace the LF variation of BP. Spectral analysis of BP, PTT, PIR, and respiratory signal confirmed that PTT was related to BP in HF at the respiratory frequency, while PIR was associated with BP in LF range. We, therefore, develop a novel BP estimation algorithm by using both PTT and PIR. The proposed algorithm was validated on 27 healthy subjects with continuous Finapres BP as reference. The results showed that the mean ± standard deviation (SD) for the estimated systolic, diastolic, and mean BP with the proposed method against reference were -0.37 ±5.21, -0.08 ±4.06, -0.18 ±4.13 mmHg, and mean absolute difference (MAD) were 4.09, 3.18, 3.18 mmHg, respectively. Furthermore, the proposed method outperformed the two most cited PTT algorithms for about 2 mmHg in SD and MAD. These results demonstrated that the proposed BP model using PIR and PTT can estimate continuous BP with improved accuracy.
In this work, we present a multi-wavelength (MW) PPG method exploiting the wavelength dependence of light penetration in skin tissue to provide depth resolution of skin blood pulsation. The MW PPG system requires two to three light sources in different wavelengths and extracts the arterial blood pulsation through a multi-wavelength multi-layer light-skin interaction model, which removes the capillary pulsation (determined from the short-wavelength PPG signal) from the long-wavelength PPG signal using absorption weighting factors that are quasi-analytically calibrated. The extracted pulsations are used to calculate blood pressure (BP) through pulse transit time (PTT), and the results are compared with those obtained from the single wavelength PPG method. The comparative study is clinically performed on 20 subjects including 10 patients diagnosed with cardiovascular diseases and 10 healthy subjects. The result demonstrates that the MW PPG method significantly improves the measurement accuracy of systolic BP (SBP), reducing the mean absolute difference between the reference and the estimated SBP values from 5.7 mmHg (for single-wavelength PPG) to 2.9 mmHg (for three-wavelength PPG).
Pulse transit time (PTT) has been widely studied as an index of blood pressure (BP) changes. In recent years, some prototypes of PTT-based wearable BP measurement devices have been developed, which can relieve users from the discomfort caused by the inflating cuff used in auscultatory and oscillometric BP measurement techniques. However, in the common practice for PTT detection, multi-site sensor implementation on human body is required, making it difficult for the integration of wearable devices. Since multi-wavelength (MW) photoplethysmogram (PPG) signals carry blood pulsation information of different blood vessels embedded in different skin depths, the time difference between different wavelength PPG signals collected at the same body site can be treated as a special PTT on a short length of blood vessels beneath the skin. In this work, the time difference between MW PPG, denoted as PTT_MW, was explored to track BP changes as a substitute of infrared (IR) PTT_EP. (PTT_EP is the time interval between electrocardiogram (ECG) and IR PPG.) Ten healthy adult subjects participated in the experiment, and their continuous BP, ECG and fingertip MW PPG signals generated from blue, green, yellow and IR light were recorded after 2-minute static handgrip exercise at 33% maximal voluntary contraction. The results showed that the correlation between Systolic BP (SBP) and IR-Blue PTT_MW (|r|= 0.52) was comparable to the correlation between SBP and IR PTT_EP (|r|= 0.59). Moreover, we optimized the wavelength combination of PTT_MWs for each subject and found the average value of optimal correlation between SBP and PTT_MW reached 0.76, which was significantly (p<;0.01) higher than the correlation between IR PTT_EP and SBP. This study reveals that the time difference between MW PPG can be potentially used as PTT for cuffless BP measurement with its unique advantage in simple sensor implementation at only one body site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.