A multidirectional damage model based on continuum damage mechanics for fiber-reinforced composite laminates is proposed in this paper. The influence of three main damage mechanisms, including transverse matrix cracking, local delamination, and fiber breakage, on the multidirectional stiffness properties of composite laminates is analyzed by introducing macro phenomenological damage variables. Then the mechanical behavior of elementary ply in laminates is modeled based on these damage variables. Besides, relations between micro-level damage variables and macro-level damage variables are established. Damage evolution laws of the three damage mechanisms are proposed to predict the degradation of multidirectional stiffness and failure strength of composite laminates under quasi-static loading. The experiment of cross-ply glass fiber-reinforced plastic laminates is carried out, and the prediction results show good agreement with the experimental results.
A multidirectional damage model was proposed to predict fatigue damage evolution and final failure of composite laminates in this paper. A damage characterization model for composite laminates was established to characterize the influence of three main damage modes on the damaged mechanical behavior of composite laminates at micro–macro level. The damage evolution model was also established based on damage mechanics to predict the evolution of the three damage modes and stiffness degradation of composite laminates by means of damage characterization model. Then, a relationship between residual stiffness and residual strength was introduced, from which the residual strength could be obtained according to the predicted residual stiffness. When the residual strength is calculated to decrease to the maximum applied stress of fatigue loading after several cycles, the composite laminate was assumed to fail, and accordingly the fatigue life could be obtained. In order to verify the model, the predicted stiffness degradation and fatigue life of two cross-ply laminates under fatigue loadings with different stress levels were compared to experimental results. The standard derivation of stiffness degradation and average errors of fatigue between prediction results and experimental results were less than 0.1 and 8.26%, respectively, indicating the effectiveness and reliability of proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.