Background: Dihydromyricetin (DMY), a natural flavonoid, has reportedly antibacterial, antioxidant, anticancer and other properties. In the present study, DMY was used as a reducing agent and stabilizer to synthesize silver nanoparticles (AgNPs), and the optimal conditions for its synthesis were studied. The DMY-AgNPs were investigated for their DPPH scavenging properties and their potential against human pathogenic and food-borne bacteria viz. Escherichia coli (E. coli), and Salmonella. In addition, DMY-AgNPs also showed excellent inhibitory effects on cancer Hela, HepG2 and MDA-MB-231 cell lines. Methods: The dihydromyricetin-mediated AgNPs (DMY-AgNPs) were characterized by ultraviolet-visible spectrophotometer (UV-Vis spectra), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD). Antioxidant activity of DMY-AgNPs was determined by 1.1-diphenyl-2-picrylhydrazyl (DPPH) scavenging. The antibacterial activity was determined by 96-well plate (AGAR) gradient dilution, while anticancer potential was determined by MTT assay. Results: The results showed that the dispersion of AgNPs had the maximum UV-visible absorption at about 410 nm. The synthesized nanoparticles were almost spherical. FTIR was used to identify functional groups that may lead to the transformation of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with biological molecules in the extraction solution. The biosynthesized DMY-AgNPs exhibited good antioxidant properties, at various concentrations (0.01-0.1mg/mL), the free radical scavenging rate was about 56-92%. Furthermore, DMY-AgNPs possessed good antibacterial properties against Escherichia coli (E. coli), and Salmonella at room temperature. The minimum inhibitory concentrations (MIC) were 10 −6 g/L, and 10 −4 g/L, respectively. The bioactivity of DMY-mediated AgNPs was studied using MTT assay against Hela, HepG2 and MDA-MB-231 cancer cell lines, and all showed good inhibitory effects. Conclusion:The present study provides a green approach for the synthesis of DMY-AgNPs which exhibited stronger antioxidant, antibacterial and anticancer properties compared to the dihydromyricetin. DMY-AgNPs can serve as an economical, efficient, and effective antimicrobial material for its applications in food and pharmaceutical fields.
Myricetin (MY) is a dietary flavonoid which exhibits a wide spectrum of biological properties, viz., antibacterial, antioxidant, anticancer, and so forth. The lower solubility in aqueous medium and hence lesser bioavailability of MY limits the use of such dietary flavonoids in further in vivo research. To overcome bioavailability limitations, a number of drug-delivery systems are being investigated. Herein, MY-mediated silver nanoparticles (MY-AgNPs) were synthesized by a green approach to improve the therapeutic efficacy of MY. MY-AgNPs were characterized by ultraviolet–visible spectroscopy (UV–Vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRD). The results showed that the dispersion of AgNPs had the maximum UV–vis absorption at about 410 nm. The synthesized nanoparticles were almost spherical. MY-AgNPs were further investigated against human pathogenic bacteria, and their antioxidant potential was also determined. The free radical scavenging rate was about 60–87%. MY-AgNPs had good antibacterial activity against Escherichia coli and Salmonella at room temperature with minimum inhibitory concentrations of 10 –4 and 10 –5 g/L, respectively.
Toddalia asiatica (L.) Lam. (Rutaceae) has shown a broad spectrum of biological properties, such as anti-inflammatory, antioxidant, antimicrobial, anti-HIV, and anticancer properties. The present study is concerned with the separation of the main components with broad partition coefficients (KD values) from T. asiatica, using linear gradient high-speed counter-current chromatography (LGCCC) combined with an off-line two-dimensional (2D) mode. Similar to the binary gradient HPLC, the LGCCC mode is operated by the adjustment of the proportion between the mobile phase of 5:5:1:9 (v/v) (pump A) and 5:5:4.5:5.5 (v/v) (pump B) in an n-hexane/ethyl acetate/methanol/water solvent system. The off-line 2D-CCC mode was used in this study for the secondary separation of two similar KD value compounds with n-hexane/ethyl acetate/methanol/water (5:5:4:6, v/v). Notably, six coumarins, namely, tomentin (1), toddalolactone (2), 5,7,8-trimethoxycoumarin (3), mexoticin (4), isopimpinellin (5), and toddanone (6), were efficiently separated. The structures of the pure compounds were elucidated by spectral techniques and compared with the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.