Genome structural variants (SVs) have great impacts on human phenotype and diversity, and have been linked to numerous diseases. Long-read sequencing technologies arise to make it possible to find SVs of as long as 10,000 nucleotides. Thus, long read-based SV detection has been drawing attention of many recent research projects, and many tools have been developed for long reads to detect SVs recently. In this article, we present a new method, called SVLR, to detect SVs based on long-read sequencing data. Comparing with existing methods, SVLR can detect three new kinds of SVs: block replacements, block interchanges, and translocations. Although these new SVs are structurally more complicated, SVLR achieves accuracies that are comparable with those of the classic SVs. Moreover, for the classic SVs that can be detected by state-of-the-art methods (e.g., SVIM and Sniffles), our experiments demonstrate recall improvements of up to 38% without harming the precisions (i.e., >78%). We also point out three directions to further improve SV detection in the future.
Many solar panels for spacecrafts are deployed by Tape Spring Hinges (TSHs) which have changeable stiffness. The stiffness of TSH is small when panels are folded, and it becomes large quickly in its deployed status. Since the solar panel is a thin sheet, flexible deformation is easily generated by orbit maneuvers. The coupling effect between the nonlinear TSHs and the flexible panels generates obvious vibration which affects the operational stability of the satellite. To investigate this coupling effect, non-deformable, linear deformable and nonlinear deformable panels were modelled by rigid body, modal order reduction method (MORM) and finite element method (FEM), respectively. The driving torque of TSH was described as a function of the rotation angle and angular velocity. The nonlinear properties of the TSH were reflected by one angle-stiffness spline multiplied by one stiffness coefficient. Dynamic responses of a satellite in deployment and orbit steering were analyzed by numerical simulations. Analysis results indicate the local deformation of panels keeps the stiffness of the TSH within a large range which accelerates the orbit maneuvers. However, much vibration is generated by the coupling effect if the luck-up status is broken up. The coupling effect affects the sequence of deployment, overshoot phenomenon and acceleration magnitude of the panels. Although the MORM is more efficient than FEM in computation, we propose FEM is better suited in the design of TSH and in studying the precise control of spacecraft with flexible solar panels and TSHs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.