Functional elucidation of causal genetic variants and elements requires precise genome editing technologies. The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage. We engineered two different type II CRISPR/Cas systems and demonstrate that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells. Cas9 can also be converted into a nicking enzyme to facilitate homology-directed repair with minimal mutagenic activity. Lastly, multiple guide sequences can be encoded into a single CRISPR array to enable simultaneous editing of several sites within the mammalian genome, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
The targeting of nucleases to specific DNA sequences facilitates genome editing. Recent work demonstrated that the CRISPR-associated (Cas) nuclease Cas9 can be targeted to sequences in vitro simply by modifying a short7 CRISPR RNA (crRNA) guide. Here we use this CRISPR-Cas system to introduce marker-free mutations in Streptococcus pneumoniae and Escherichia coli. The approach involves re-programming Cas9 by using a crRNA complementary to a target chromosomal locus and introducing a template DNA harboring a desired mutation and an altered crRNA recognition site for recombination with the target locus. We exhaustively analyze Cas9 target requirements to define the range of targetable sequences and show strategies for editing sites that do not meet these requirements. Alone or together with recombineering, CRISPR assisted editing induces recombination at the targeted locus and kills non-edited cells leading to a recovery of close to a 100% of edited cells. Multiple crRNA can be used to modify several loci simultaneously. Our results show that CRISPR-mediated genome editing only requires programming of the crRNA and template sequences and thus constitutes a useful tool for genetic engineering.
The ability to artificially control transcription is essential both to the study of gene function and to the construction of synthetic gene networks with desired properties. Cas9 is an RNA-guided double-stranded DNA nuclease that participates in the CRISPR-Cas immune defense against prokaryotic viruses. We describe the use of a Cas9 nuclease mutant that retains DNA-binding activity and can be engineered as a programmable transcription repressor by preventing the binding of the RNA polymerase (RNAP) to promoter sequences or as a transcription terminator by blocking the running RNAP. In addition, a fusion between the omega subunit of the RNAP and a Cas9 nuclease mutant directed to bind upstream promoter regions can achieve programmable transcription activation. The simple and efficient modulation of gene expression achieved by this technology is a useful asset for the study of gene networks and for the development of synthetic biology and biotechnological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.