Connectionist Temporal Classification (CTC) and attention mechanism are two main approaches used in recent scene text recognition works. Compared with attention-based methods, CTC decoder has a much shorter inference time, yet a lower accuracy. To design an efficient and effective model, we propose the guided training of CTC (GTC), where CTC model learns a better alignment and feature representations from a more powerful attentional guidance. With the benefit of guided training, CTC model achieves robust and accurate prediction for both regular and irregular scene text while maintaining a fast inference speed. Moreover, to further leverage the potential of CTC decoder, a graph convolutional network (GCN) is proposed to learn the local correlations of extracted features. Extensive experiments on standard benchmarks demonstrate that our end-to-end model achieves a new state-of-the-art for regular and irregular scene text recognition and needs 6 times shorter inference time than attention-based methods.
Connectionist Temporal Classification (CTC) and attention mechanism are two main approaches used in recent scene text recognition works. Compared with attention-based methods, CTC decoder has a much shorter inference time, yet a lower accuracy. To design an efficient and effective model, we propose the guided training of CTC (GTC), where CTC model learns a better alignment and feature representations from a more powerful attentional guidance. With the benefit of guided training, CTC model achieves robust and accurate prediction for both regular and irregular scene text while maintaining a fast inference speed. Moreover, to further leverage the potential of CTC decoder, a graph convolutional network (GCN) is proposed to learn the local correlations of extracted features. Extensive experiments on standard benchmarks demonstrate that our end-to-end model achieves a new state-of-the-art for regular and irregular scene text recognition and needs 6 times shorter inference time than attentionbased methods. * This work was done when Wenyang was an intern at Sense-Time Group Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.