Microorganisms often respond to their environment by growing as densely packed communities in biofilms, flocs or granules. One major advantage of life in these aggregates is the retention of its community in an ecosystem despite flowing water. We describe here a novel type of granule dominated by filamentous and motile cyanobacteria of the order Oscillatoriales. These bacteria form a mat-like photoactive outer layer around an otherwise unconsolidated core. The spatial organization of the phototrophic layer resembles microbial mats growing on sediments but is spherical. We describe the production of these oxygenic photogranules under static batch conditions, as well as in turbulently mixed bioreactors. Photogranulation defies typically postulated requirements for granulation in biotechnology, i.e., the need for hydrodynamic shear and selective washout. Photogranulation as described here is a robust phenomenon with respect to inoculum characteristics and environmental parameters like carbon sources. A bioprocess using oxygenic photogranules is an attractive candidate for energy-positive wastewater treatment as it biologically couples CO2 and O2 fluxes. As a result, the external supply of oxygen may become obsolete and otherwise released CO2 is fixed by photosynthesis for the production of an organic-rich biofeedstock as a renewable energy source.
This study presents the oxygenic photogranule (OPG) process, a light-driven process for wastewater treatment, developed based on photogranulation of filamentous cyanobacteria, nonphototrophic bacteria, and microalgae. Unlike other biogranular processes requiring airlift or upflow-based mixing, the OPG process was operated in stirred-tank reactors without aeration. Reactors were seeded with hydrostatically grown photogranules and operated in a sequencing-batch mode for five months to treat wastewater. The new reactor biomass propagated with progression of photogranulation under periodic light/dark cycles. Due to effective biomass separation from water, the system was operated with short settling time (10 min) with effective decoupling of hydraulic and solids retention times (0.75 d vs 21-42 d). During quasi-steady state, the diameter of the OPGs ranged between 0.1 and 4.5 mm. The reactors produced effluents with average total chemical oxygen demand less than 30 mg/L. Nitrogen removal (28-71%) was achieved by bioassimilation and nitrification/denitrification pathways. Oxygen needed for the oxidation of organic matter and nitrification was produced by OPGs at a rate of 12.6 ± 2.4 mg O/g biomass-h. The OPG system presents a new biogranule process, which can potentially use simple mixing and natural light to treat wastewater.
Oxygenic photogranules have received increasing interest due to their ability to treat wastewater without aeration and recover wastewater's chemical energy and solar energy. It has been reported that these photogranules can be produced under both hydrostatic and hydrodynamic conditions, and enrichment of filamentous cyanobacteria is required for this photogranulation to occur. Despite the critical role extracellular polymeric substances (EPS) play in granulation, EPS in photogranulation is yet virtually unknown. Here, we present the fate and dynamics of different fractions of EPS in sludge-based photogranulation under hydrostatic conditions. The study shows that during the transformation of activated sludge into a photogranular biomass, sludge's base-extractable proteins selectively degrade. Strong correlations between base-extracted proteins and the growth of chlorophyll a and chlorophyll a/ b ratio suggest that the bioavailability of this organic nitrogen is linked with selection and enrichment of filamentous cyanobacteria under hydrostatic conditions. The results of soluble and sonication-extractable EPS and microscopy also show that the growth of filamentous cyanobacteria required large amounts of polysaccharide-based EPS for their motility and maintenance. With findings on the progression of photogranulation, the fate and dynamics of EPS, and microscopy on microstructures associated with EPS, we discuss potential mechanisms of photogranulation occurring under hydrostatic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.